Abstract:
A method of manufacturing an integrated circuit structure forms a first opening in a substrate (100; Figure 1) and lines the first opening with a protective liner. (102) The method deposits a material into the first opening (104) and forms a protective material over the substrate. The protective material includes a process control mark and includes a second opening above, and aligned with, the first opening. (108) The method removes the material from the first opening through the second opening in the protective material. (110) The process control mark comprises a recess within the protective material that extends only partially through the protective material, such that portions of the substrate below the process control mark are not affected by the process of removing the material.
Abstract:
An image sensor (20) and method of fabrication wherein the sensor includes Copper (Cu) metallization levels (135a, 135b) allowing for incorporation of a thinner interlevel dielectric stack (130a-130c) to result in a pixel array (100) exhibiting increased light sensitivity. The image sensor includes structures having a minimum thickness of barrier layer metal (132a, 132b) that traverses the optical path of each pixel in the sensor array or, that have portions (50) of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer (142) may be formed atop the Cu metallization by a self-aligned deposition.
Abstract:
PROBLEM TO BE SOLVED: To provide a bipolar transistor structure with enhanced performance by optimizing junction interface characteristics between an emitter and a base, and a manufacturing method therefor.SOLUTION: The bipolar transistor includes: (1) a collector region 15 located at least in-part within a semiconductor substrate; (2) a base region 16 contacting the collector region; and (3) an emitter region 24 contacting the base region. A damaged region 16A that includes an oxygen impurity and at least one impurity selected from a group consisting of a fluorine impurity and a carbon impurity is formed in a layer 16 that includes a base of an emitter aperture at an interface between the emitter region and the base region, thus the performance of the bipolar transistor being enhanced. The impurities may be introduced into the interface by plasma etch treatment or alternatively a thermal treatment followed by an anhydrous ammonia and hydrogen fluoride treatment, of a base material composing the base region.
Abstract:
PROBLEM TO BE SOLVED: To provide a resistor that has a heat sink with excellent heat conduction. SOLUTION: This heat sink includes a conduction path that has a high-thermal conductivity metal and other thermal conductors. In order that an electrical resistor may not be short-circuited to earth by this thermal resistor, a thin layer with a high-thermal conductivity electric insulator is interposed between the thermal conductor and the resistor's body. Accordingly, since heat is conducted to the heat sink in a direction in which the thermal conductor with high thermal conductivity moves away from the resistor, the resistor can pass a large amount of current. In addition to the fact that a parasitic capacitance and other electric parasitic actions that help reduce high-frequency responses from the electric resistor are lowered, various structures of a thermal conductor and heat sink are achieved through which favorable thermal conduction characteristics are obtained. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a metal capacitor installed on a chip. SOLUTION: Capacitors (60, 126) manufactured on a semiconductor chip have strap/contacts (41A, 119A), which mutually connect bottom plates (41B, 111A) of a capacitor to a chip circuit. In one version, an extension part of a material, constituting a bottom plate of a capacitor forms a strap contact. In the other version, a capacitor (185) comprises a folded bottom plate, which uses an available space and therefore increases its capacitance, a dielectric layer and a top plate. By means of a plurality of manufacturing methods, manufacturing of these capacitors of various versions can be incorporated in a standard dual or single-damascene manufacturing process, including a copper damascene process.
Abstract:
PROBLEM TO BE SOLVED: To facilitate mutual connection between a connecting wire and a mutual connection stud by using a sidewall spacer on the side face of the connecting wire for widening the contact area between the connecting wire and the connection stud. SOLUTION: A semiconductor part 100 has a connection stud 102 connecting the first connecting wire 104 to the second connecting wire 106. The first connecting wire 104 and the second connecting wire 106 and made of a metallic conductor in high conductivity. A substitute conductive path is formed between the first connecting wire 104 and the mutual connection stud 102 by a sidewall spacer 2 added to the first connecting wire 104 before an insulator is bonded. Especially, the side wall 22 comes into contact with a Ti/TiN layer 108 along the outer side thereof. Furthermore, the connection stud 102 is connected to the sidewall spacer 122 which is further connected to the first connecting wire 104. Accordingly, the sidewall spacer 122 is connected to the first connecting wire 104 along the whole sidewall thereof.
Abstract:
PROBLEM TO BE SOLVED: To provide re-work processing methods of both the level of a single chip connecting or an interconnecting metal and a multilevel. SOLUTION: The method of re-working a BEOL (a back end of a process line) metallization levels of damascene metallurgy comprises the processes of: forming a plurality of BEOL metallization levels 101, 102 on a substrate 110; forming line and via portions in the BEOL metallization level; exposing the line section and the via section by selectively removing at least one BEOL metallization level; and replacing a removed BEOL metallization level with at least one of new BEOL metallization levels. The BEOL metallization levels 101, 102 comprises a first dielectric layers 120, 130 and second dielectric layers 125, 135, and the first dielectric layer includes a material having a dielectric constant lower than that of the second dielectric layer. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a highly reliable chip-on-capacitor. SOLUTION: The capacitor (94) in a semiconductor device (20) has a lower copper plate (30) in a damascene/trench (22), barrier layers (56, 180a) disposed above the lower plate, a dielectric layer (60) disposed above the barrier layers and an upper plate (96) above the dielectric layer. Another embodiment of this invention is capacitors (296, 396) in a semiconductor device, which has two lower plates (230, 231, 330, 331) mutually separated, dielectric layers (260, 360) above the lower plate and upper plates (296, 396) above the dielectric layer which covers the lower plate, extends preferably across it. This invention further includes a method for manufacturing the capacitor of such a constitution.
Abstract:
PROBLEM TO BE SOLVED: To provide a metallic capacitor which is provided inside a metal layer on a semiconductor chip. SOLUTION: A lower plate of a capacitor is provided between an insulation layer and a dielectric layer. An insulation layer is disposed adjacent to a metallization layer, and a dielectric layer separates a lower plate of a capacitor from the upper plate of the capacitor. The shoulder part of a lower plate is adjacent to it and brought into contact with a via filled with copper. Although a via extends upward to a common surface of the upper plate, it is electrically isolated from an upper plate. A via also extends downward toward a metallization layer. This structure is formed by a copper dual-damascene process.
Abstract:
PROBLEM TO BE SOLVED: To provide a precision circuit element and a method of forming it. SOLUTION: The circuit element is formed as one part of an integrated circuit assembly. The process of the circuit element provides a nominal value of the circuit element that is near to a desired value. An additional trim circuit element is coupled through a link to the nominal circuit element. The Link is a fusible link or an anti fuse. By fusing and cutting the fusible link selectively or by adding or reducing the trim circuit element by fusing the anti fuse, the nominal value of the circuit element is individuated. In a typical example, a capacitor is used.