Abstract:
Various traffic management techniques may be employed in a multi-hop wireless communication system. For example, a decision to transmit data to another node may be based on whether that node is able to effectively transmit its data. A decision to transmit an interference management message may be based on the amount of data a parent node may transmit. A decision to transmit an interference management message may be based on how effectively data is being transmitted. A weight may be assigned for an interference management message based on a traffic scheduling policy.
Abstract:
A mobile communications device is described that includes a processor configured to establish a network connection with a server in a network and a data generator under the control of the processor that is configured to periodically generate a data unit at a rate having a fixed period. The mobile communications device also includes a transceiver configured to transmit, via the network connection, the data unit during one of plurality of slots, each slot being an adjacent fractional portion of the fixed period.
Abstract:
To transmit overhead information for broadcast and multicast services in a system that utilizes multiple radio technologies, time slots used for OFDM in a super-frame are initially ascertained. Overhead information for multiple streams to be sent in the time slots used for OFDM is generated. The overhead information conveys the time slots and the coding and modulation used for the streams and may be given in various forms. Multiple records may be formed for the overhead information for the streams. The overhead information for the streams is processed and time division multiplexed with the data for the streams in the super-frame. Information indicating the time slots used for OFDM in the super-frame may be sent separately or included in the overhead information. An indicator may also be appended to each stream to indicate whether there is any change in the overhead information for the stream in the next super-frame.
Abstract:
Methods, systems, and devices for wireless communication are described that provide for detection and management of hidden node interference. A user equipment (UE) may provide measurement reports to a serving transmitting device to help identify the hidden node interferer in response to detecting hidden node interference. The serving transmitting device may collaborate with one or more neighboring transmitting devices, such as other transmitting devices of an operator of a wireless communications system, to identify one or more of the neighboring transmitting devices that are within an energy detect or preamble detect radius of the hidden node. The serving transmitting device may coordinate with the neighboring transmitting device(s) to determine when the hidden node may transmit, to transmit coordinated preamble transmissions to prevent the hidden node from transmitting during a transmission, or to identify a modulation and coding scheme for the transmission.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) or base station communicating in an unlicensed radio frequency spectrum band may transmit a signal (e.g., a request-to-send (RTS) or clear-to-send (CTS) signal) in a licensed radio frequency spectrum band to decrease the likelihood that neighboring devices will transmit interfering communications. Specific resources may be designated in the licensed radio frequency spectrum band for transmitting these signals, and these resources may be associated with specific unlicensed channels. Signaling in the licensed radio frequency spectrum band may also carry an indication of the unlicensed channel being used or other information relevant to the unlicensed communication. The RTS/CTS signaling in licensed radio frequency spectrum band may be transmitted during a downlink transmit opportunity or an uplink transmit opportunity, or both. Different energy detection thresholds may apply to RTS/CTS signals in licensed and unlicensed spectrum.
Abstract:
Techniques are described for wireless communication. A first method may include inserting, in a first transmission using a first radio access technology (RAT), a channel occupancy identifier for a second transmission using a second RAT. The first method may also include transmitting the first transmission having the channel occupancy identifier over an unlicensed radio frequency spectrum band. A second method may include receiving, at a receiver operated using a first RAT, a channel occupancy identifier for a transmission using a second RAT. The channel occupancy identifier may be received over an unlicensed radio frequency spectrum band. The second method may also include decoding the channel occupancy identifier to identify a backoff period, and refraining from accessing the unlicensed radio frequency spectrum band using the first RAT based at least in part on the identified backoff period.
Abstract:
Techniques are described for wireless communication. One method includes implementing, at a first node, a first access protocol to contend for access to a wireless communication medium shared by a plurality of nodes; determining whether a triggering event has occurred; and implementing, at the first node, a second access protocol to contend for access to the wireless communication medium based at least in part on a determination that the triggering event has occurred.
Abstract:
In a cellular wireless communication system, peer-to-peer (P2P) links between mobile devices are implemented, and controlled using an aggregate utility metric for a group of P2P and cellular links. A mobile node participating in a P2P link, or an eNB, may periodically broadcast an activity level indicator indicating a resource-dependent activity level of the link. The node may control the activity level in response to utility metrics received from members of neighboring P2P links to maximize an aggregate utility of the link and the neighboring P2P links sharing at least a subset of resources of a common frequency spectrum. Formation or termination of P2P links may be controlled in response to comparing a calculated achievable utility value to a current utility value of a link, and taking action calculated to maximize the aggregate utility value.
Abstract:
Various systems and methods for network management are disclosed. In one embodiment, a network management system comprises a receiver for receiving data from a plurality of entities, including base stations and/or subscriber handsets, a processor for generating a network map or a recommendation based on the received data, a display device for displaying the network map or recommendation, and a transmitter for transmitting instructions based on the recommendation.
Abstract:
Techniques for selecting and processing signals from different stations in a wireless network are described. A destination station may receive a direct signal from a source station and at least one relay signal from at least one relay station. The destination station may determine metrics for the source and relay stations, e.g., based on pilots received from these stations. The destination station may select at least one signal to process from among the direct and relay signals based on the metrics for the source and relay stations. The destination station may select the direct signal if the metric for the source station exceeds a threshold. The destination station may select the relay signal from each relay station having a metric exceeding at least one threshold. The destination station may process the at least one selected signal to recover a transmission sent by the source station to the destination station.