Abstract:
Method of manufacturing an edge structure for a high voltage semiconductor device, comprising a first step of forming a first semiconductor layer (41) of a first conductivity type, a second step of forming a first mask (37) over the top surface of the first semiconductor layer (41), a third step of removing portions of the first mask (37) in order to form at least one opening (51) in it, a fourth step of introducing dopant of a second conductivity type in the first semiconductor layer (41) through the at least one opening (51), a fifth step of completely removing the first mask (37) and of forming a second semiconductor layer (42) of the first conductivity type over the first semiconductor layer (41), a sixth step of diffusing the dopant implanted in the first semiconductor layer (41) in order to form a doped region (220) of the second conductivity type in the first and second semiconductor layers (41, 42). The second step up to the sixth step are repeated at least one time in order to form a final edge structure comprising a number of superimposed semiconductor layers (41, 42, 43, 44, 45, 46) of the first conductivity type and at least two columns of doped regions (220, 230, 240, 250, 260) of the second conductivity type, the columns being inserted in the number of superimposed semiconductor layers (41, 42, 43, 44, 45, 46) and formed by means of superimposition of the doped regions (220, 230, 240, 250, 260) subsequently implanted through the mask openings, the column near the high voltage semiconductor device being deeper than the column farther to the high voltage semiconductor device.
Abstract:
Method for producing a wafer of a first semiconductor material (515). Said first semiconductor material has a first melting temperature. The method comprises providing a crystalline substrate (102) of a second semiconductor material having a second melting temperature lower than the first melting temperature, and exposing the crystalline substrate to a flow of first material precursors for forming a first layer (510) of the first material on the substrate. The method further comprising bringing the crystalline substrate to a first process temperature higher than the second melting temperature, and at the same time lower than the first melting temperature, in such a way the second material melts, separating the second melted material from the first layer, and exposing the first layer to the flow of the first material precursor for forming a second layer (530) of the first material on the first layer.
Abstract:
Process for manufacturing a multi-drain power electronic device (30) integrated on a semiconductor substrate (100) of a first type of conductivity, comprising the following steps: forming a first semiconductor layer (21) of the first type of conductivity and of a first resistivity (ρ 1 ) value on the semiconductor substrate (100), forming at least a second semiconductor layer (22) of a second type of conductivity of a second resistivity (ρ 2 ) value on the first semiconductor layer (21), forming, in this at least a second semiconductor layer (22), a first plurality of implanted regions (D1) of the first type of conductivity by means of a first selective implant step with a first implant dose (Φ 1 ) , forming, above this at least a second semiconductor layer (22), a superficial semiconductor layer (26) of the first type of conductivity of a third resistivity (ρ 6 ) value, forming in the surface semiconductor layer (26) body regions (40) of the second type of conductivity, the body regions (40) being aligned with portions of the semiconductor layer (22) free from the plurality of implanted regions (D1), carrying out a thermal diffusion step so that the plurality of implanted regions (D1) form a plurality of electrically continuous implanted column regions (D) along this at least a second semiconductor layer (22), the plurality of column implanted regions (D) delimiting a plurality of column regions (50) of the second type of conductivity aligned with the body regions (40).
Abstract:
Method for manufacturing a vertical power MOS transistor on a semiconductor substrate (10) with wide band gap comprising a first superficial semiconductor layer (11) with wide band gap of a first type of conductivity, comprising the steps of: - forming trench regions (13) in the first superficial semiconductor layer (11), - filling in said trench regions (13) by means of a second semiconductor layer (14) with wide band gap of a second type of conductivity, so as to form semiconductor portions (15) of the second type of conductivity contained in the first superficial semiconductor layer (11), - carrying out at least one ion implantation of a first type of dopant in the semiconductor portions (15) for forming respective implanted body regions (19) of said second type of conductivity, - carrying out at least one ion implantation of a second type of dopant in each of the implanted body regions (19) for forming at least one implanted source region (23) of the first type of conductivity inside the implanted body regions (19), - carrying out an activation thermal process of the first and second type of dopant with low thermal budget suitable to complete said formation of the implanted body and source regions (19,23).
Abstract:
Power MOS device of the type comprising a plurality of elementary power MOS transistors (2) having respective gate structures (12) and comprising a gate oxide (7) with double thickness having a thick central part (8) and lateral portions (9) of reduced thickness. Such device exhibiting gate structures (12) comprising first gate conductive portions (13) overlapped onto said lateral portions (9) of reduced thickness to define, for the elementary Mos transistors (2), the gate electrodes, as well as a conductive structure or mesh (14). Such conductive structure (14) comprising a plurality of second conductive portions (15) overlapped onto the thick central part (8) of gate oxide (7) and interconnected to each other and to the first gate conductive portions (13) by means of a plurality of conducive bridges (16). The present invention further relates to a method for realising the power MOS device.
Abstract:
Method of manufacturing an edge structure for a high voltage semiconductor device, comprising a first step of forming a first semiconductor layer (41) of a first conductivity type, a second step of forming a first mask (37) over the top surface of the first semiconductor layer (41), a third step of removing portions of the first mask (37) in order to form at least one opening (51) in it, a fourth step of introducing dopant of a second conductivity type in the first semiconductor layer (41) through the at least one opening (51), a fifth step of completely removing the first mask (37) and of forming a second semiconductor layer (42) of the first conductivity type over the first semiconductor layer (41), a sixth step of diffusing the dopant implanted in the first semiconductor layer (41) in order to form a doped region (220) of the second conductivity type in the first and second semiconductor layers (41, 42). The second step up to the sixth step are repeated at least one time in order to form a final edge structure comprising a number of superimposed semiconductor layers (41, 42, 43, 44, 45, 46) of the first conductivity type and at least two columns of doped regions (220, 230, 240, 250, 260) of the second conductivity type, the columns being inserted in the number of superimposed semiconductor layers (41, 42, 43, 44, 45, 46) and formed by means of superimposition of the doped regions (220, 230, 240, 250, 260) subsequently implanted through the mask openings, the column near the high voltage semiconductor device being deeper than the column farther to the high voltage semiconductor device.
Abstract:
The high-gain photodetector (1) is formed in a semiconductor-material body (5) which houses a PN junction (13, 14) and a sensitive region (19) that is doped with rare earths, for example erbium (Er). The PN junction (13, 14) forms an acceleration and gain region (13, 14) separate from the sensitive region (19). The PN junction is reverse-biased and generates an extensive depletion region accommodating the sensitive region (19). Thereby, the incident photon having a frequency equal to the absorption frequency of the used rare earth crosses the PN junction (13-14), which is transparent to light, can be captured by an erbium ion in the sensitive region (19), so as to generate a primary electron, which is accelerated towards the PN junction by the electric field present, and can, in turn, generate secondary electrons by impact, according to an avalanche process. Thereby, a single photon can give rise to a cascade of electrons, thus considerably increasing detection efficiency.
Abstract:
The invention relates to a semiconductor device for electro-optic applications of the type including at least a rare-earth ions doped P/N junction integrated on a semiconductor substrate. This device may be used to obtain laser action in Silicon and comprises a cavity or a waveguide and a coherent light source obtained incorporating the rare-earth ions, and specifically Erbium ions, in the depletion layer of said P/N junction. The junction may be for instance the base-collector region of a bipolar transistor and is reverse biased.
Abstract:
A MOS-technology power device integrated structure comprises a plurality of elementary functional units formed in a semiconductor material layer (3) of a first conductivity type. The elementary functional units comprise body stripes (9;90) of a second conductivity type extending substantially parallely to each other and source regions (14;140) of the first conductivity type. A conductive gate layer (17;170) is insulatively disposed over the semiconductor material layer (3) between the body stripes (9;90). A mesh (4;40) of the second conductivity type is formed in the semiconductor material layer (3) and comprises an annular frame region (5;50) surrounding the plurality of body stripes (9;90) and at least one first elongated stripe (7;60) extending within the annular frame region (5;50) in a direction substantially orthogonal to the body stripes (9;90) and merged with the annular frame region (5;50), the body stripes (9;90) being divided by the first elongated stripe (7;60) in two respective groups and being merged with the mesh (4;40). A conductive gate finger (25;250) connected to said conductive gate layer (17;170) insulatively extends over the first elongated stripe (7;60). Source metal plates (20;200) are provided covering each group of parallel body stripes and contacting each body stripe of the group. The conductive gate finger (25;250) is covered and contacted by a respective metal gate finger (27;270).
Abstract:
A MOS technology power device comprises a plurality of elementary functional units, each elementary functional unit comprising a body region (3) of a first conductivity type formed in a semiconductor material layer (2) of a second conductivity type having a first resistivity value. Under each body region (3) a respective lightly doped region (20) of the second conductivity type is provided having a second resistivity value higher than said first resistivity value.