Abstract:
A method for reducing thermal conductivity in thermal barrier coatings (TBC) through the incorporation of porosity comprising the steps of depositing a mixture comprising a TBC matrix (13) and a fugitive material (11) upon a part to form a layer, and heating the layer at a temperature and for a duration sufficient to liberate a portion of the fugitive material to form a porous network.
Abstract:
A turbine engine component is provided which has a substrate, a yttria- stabilized zirconia coating applied over the substrate, and a molten silicate resistant outer layer. The molten silicate resistant outer layer is formed from gadolinia or gadolinia-stabilized zirconia. A method for forming the coating system of the present invention is described.
Abstract:
A method for applying a hybrid thermal barrier coating, comprising masking at least a portion of a first surface of a component with a first maskant; applying a first coating material to at least a portion of a second surface of said component; removing said first maskant; optionally masking at least a portion of said second surface of said component with a second maskant; applying a second coating material to at least a portion of said first surface of said component; and removing said second maskant.
Abstract:
A component according to an exemplary aspect of the present disclosure includes, among other things, a substrate, a thermal barrier coating deposited on at least a portion of the substrate, and an outer layer deposited on at least a portion of the thermal barrier coating. The outer layer includes a material that absorbs energy in response to an impact event along at least a portion of the outer layer.
Abstract:
A method for use in a coating process includes pre-heating a substrate in the presence of a coating material and shielding the substrate during the pre-heating from premature deposition of the coating material by establishing a gas screen between the substrate and the coating material. An apparatus for use in a coating process includes a chamber, a crucible that is configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible. A second manifold provides gas during a later coating deposition to compress a vapor plume of the coating material and focus the plume on the substrate to increase deposition rate.
Abstract:
A thermal barrier coating for a turbine engine component contains neodymia, optionally alumina, and zirconia. The thermal barrier coating has resistance to CMAS attack and a low thermal conductivity.
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.
Abstract:
A thermal barrier coating comprising from 20.5 to 22.5 mol% of CeO2 combined with an oxide selected from the group consisting of zirconia, hafnia, and ceria.