Abstract:
The invention relates to a method for the processing of call inputs of a user by an elevator controller of an elevator installation in which a user inputs either an external call and an internal call or a destination call into the elevator controller, wherein the elevator controller generates at least two sub-calls in reaction to the internal call or the destination call, wherein the sub-calls comprise at least one external call and/or at least one internal call whose destination floor is different from the destination floor of the internal call input by the user. The invention furthermore relates to a method in which an elevator controller generates a destination call or an internal call in reaction to an external call. The invention furthermore relates to corresponding elevator installations designed for carrying out these methods.
Abstract:
Horizontally moveable elevator cabs A-E are transferrable between the car frames (72) of two elevators HI, LO in adjacent hoistways which extend between at least three levels (GND, MID, SKY) of a building, and between the car frames and landings L, R at said levels. The vertical movement of cars in the hoistways is synchronized, and transfer of elevator cabs between landings and car frames is simultaneous.
Abstract:
Horizontally movable elevator cabs (22, 23) are transferred from the upper deck of a first car frame (26) to the upper deck of a second car frame (27) and from the lower deck of the second car frame to the lower deck of the first car frame. Three elevator hoistways, each with a double deck car frame are controlled by computer routines. A rack and pinion horizontal motive means, for moving the cab from car frame to car frame is also briefly disclosed.
Abstract:
Modern large buildings and public places are equipped with a plurality of elevators, exits and points of interest for fluent movement. The passenger flows in a building or public place can be traced and modelled by using statistics and information regarding current state of the modelled building or public place. The information derived from this model can be used for controlling elevators, escalators and similar in the building more efficiently. The same information may be used also for guiding passengers in the building or public place to use other transportation means so that the duration high traffic situation can be reduced or sometimes completely avoided.
Abstract:
An elevator system having a double or multiple elevator cabins per elevator shaft can be controlled using a method, wherein at least one destination call is entered or at least one identification code is received on at least one call entry floor, said destination call or identification code designating an arrival floor; wherein at least one trip by at least one elevator cabin of the double or multiple elevator cabin from a departure floor to an arrival floor is determined for the destination call or identification code; wherein before determining a trip, it is determined whether at least one situation-specific parameter is fulfilled; and if said situation-specific parameter is fulfilled, at least one situation-compatible call assignment is determined for a trip having a floor difference of zero between the call entry floor and the departure floor or having a floor difference of zero between the destination floor and the arrival floor.
Abstract:
An elevator system having a double or multiple elevator cabins per elevator shaft can be controlled using a method, wherein at least one destination call is entered or at least one identification code is received on at least one call entry floor, said destination call or identification code designating an arrival floor; wherein at least one trip by at least one elevator cabin of the double or multiple elevator cabin from a departure floor to an arrival floor is determined for the destination call or identification code; wherein before determining a trip, it is determined whether at least one situation-specific parameter is fulfilled; and if said situation-specific parameter is fulfilled, at least one situation-compatible call assignment is determined for a trip having a floor difference of zero between the call entry floor and the departure floor or having a floor difference of zero between the destination floor and the arrival floor.
Abstract:
The present invention improves the performance of the group control of elevators by shortening the waiting time for connections to the top floor in a system composed of a plurality double deck elevators having upper decks (1aU)˜(1eU) and lower decks (1aL)˜(1eL), respectively.
Abstract:
An elevator system provides service between a ground level and each of three upper levels through a single elevator shuttle hoistway system. Three elevator cabs 34-36, B, D, F are moved in a triple deck elevator car frame 35, or a four deck elevator car frame 75 in a low hoistway 26, 76; two cabs are moved in a double deck elevator car frame 30 or four deck car frame 76 in a mid hoistway 27, 52; and one cab is moved in a single deck car frame 31 or triple deck car frame 77 in a high hoistway 28, 53. Other embodiments have other car frame arrangements.
Abstract:
Elevator cabs A-C move upwardly through three or more contiguous overlapping hoistways 38-40 in the upper decks of double deck car frames 41-43, and move downwardly through the hoistways in the lower decks (or vice versa). To switch between decks, the cabs are offloaded from the hoistways into auxiliary elevators 50, 51 at the terminal ends of the shuttle, and are moved to be adjacent to the other deck by the auxiliary elevator and loaded thereon for the trip in the opposite direction. A second embodiment has additional auxiliary elevators 64, 65 and additional cabs D, E so that loading and unloading of passengers do not delay movement of the cabs in the hoistways.