Abstract:
A method for producing optically planar surfaces for micro-electromechanical system devices (MEMS), comprising the steps of: depositing a first layer over a substrate; forming a channel in the first layer wherein the channel has a depth defined by a thickness of the first layer and a width greater than 10 microns; depositing a second layer over the first layer wherein the second layer has a thickness greater than the depth of the channel and is composed of a different material than the first layer; removing the second layer from outside the channel leaving an overlap at the edge of the channel; and polishing the second layer that fills the channel to obtain an optically planar surface for the MEMS device.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A method for pseudo-planarization of an electromechanical device and for forming a durable metal contact on the electromechanical device and devices formed by the method are presented. The method comprises acts of depositing various layers forming a semiconductor device. Two principal aspects of the method include the formation of a planarized dielectric/conductor layer on a substrate and the formation of an electrode in an armature of a microelectromechanical switch, with the electrode formed such that it interlocks a structural layer of the armature to ensure it remains fixed to the armature over a large number of cycles. The present invention also relates to a system and method for making MEM switches having a common ground plane. One method for making MEM switches includes: patterning a common ground plane layer on a substrate; forming a dielectric layer on the common ground plane layer; depositing a DC electrode region through the dielectric layer to contact the common ground plane layer; and depositing a conducting layer on the DC electrode region so that regions of the conducting layer contact the DC electrode region, so that the common ground plane layer provides a common ground for the regions of the conducting layer.
Abstract:
A process for the manufacture of semiconductor devices comprising the chemical-mechanical polishing of a substrate or layer containing at least one lll-V material in the presence of a chemical-mechanical polishing composition (Q1) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one amphiphilic non-ionic surfactant having (b1) at least one hydrophobic group; and (b2) at least one hydrophilic group selected from the group consisting of polyoxyalkylene groups comprising (b22) oxyalkylene monomer units other than oxyethylene monomer units; and (M) an aqueous medium.
Abstract:
A method for pseudo-planarization of an electromechanical device and for forming a durable metal contact on the electromechanical device and devices formed by the method are presented. The method comprises acts of depositing various layers forming a semiconductor device. Two principal aspects of the method include the formation of a planarized dielectric/conductor layer on a substrate and the formation of an electrode in an armature of a microelectromechanical switch, with the electrode formed such that it interlocks a structural layer of the armature to ensure it remains fixed to the armature over a large number of cycles. The present invention also relates to a system and method for making MEM switches having a common ground plane. One method for making MEM switches includes: patterning a common ground plane layer on a substrate; forming a dielectric layer on the common ground plane layer; depositing a DC electrode region through the dielectric layer to contact the common ground plane layer; and depositing a conducting layer on the DC electrode region so that regions of the conducting layer contact the DC electrode region, so that the common ground plane layer provides a common ground for the regions of the conducting layer.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A method of disposing a plurality of isolated particles of a first material onto a substrate comprising the steps of:
(a) depositing a first species onto the substrate; (b) anodizing the first species to produce a second species; (c) altering the surface of the second species so that at least one first region of the second species is of greater thickness than at least one second region of the second species; (d) depositing the first material onto the second species; and (e) levelling the surface of the first material and the second species.
Abstract:
A semiconductor arrangement and method of formation are provided. The semiconductor arrangement includes an electro-wetting-on-dielectric (EWOD) device. The EWOD device includes a top portion over a bottom portion and a channel gap between the top portion and the bottom portion. The bottom portion includes a driving dielectric layer over a first electrode, a second electrode and a first separating portion of an ILD layer between the first electrode and a second electrode. The driving dielectric layer has a first thickness less than about 1,000 Å. An EWOD device with a driving dielectric layer having a first thickness less 1000 Å requires a lower applied voltage to alter a shape of a droplet within the device and has a longer operating life than an EWOD device that requires a higher applied voltage to alter the shape of the droplet.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.