Abstract:
A method for encapsulating an MEMS structure in a stack structure includes providing a functional wafer structure including at least partly the MEMS structure. The method includes arranging the functional wafer structure and a glass wafer in the stack structure and along a stacking direction and is performed such that a cavity, in which at least part of the MEMS structure is arranged, is closed on one side along the stacking direction by the glass wafer and such that a spacing structure is arranged between the part of the MEMS structure and the glass wafer in the stack structure to provide a spacing between the part of the MEMS structure and the glass wafer along the stacking direction, such that the spacing structure encloses part of the cavity.
Abstract:
According to one embodiment, an electronic device includes a base region, an element portion located on the base region, the element portion including a movable portion, and a protective film overlying the element portion and forming a cavity on an inner side of the protective film. The protective film includes a first protective layer and a second protective layer located on the first protective layer. A hole extends in a direction parallel to a main surface of the base region, and the second protective layer covers the hole.
Abstract:
A process for the manufacture of semiconductor devices comprising the chemical-mechanical polishing of a substrate or layer containing at least one lll-V material in the presence of a chemical-mechanical polishing composition (Q1) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one amphiphilic non-ionic surfactant having (b1) at least one hydrophobic group; and (b2) at least one hydrophilic group selected from the group consisting of polyoxyalkylene groups comprising (b22) oxyalkylene monomer units other than oxyethylene monomer units; and (M) an aqueous medium.
Abstract:
A piezoelectric microphone and/or a piezoelectric microphone system is presented herein. In an implementation, a piezoelectric microphone includes a microelectromechanical systems (MEMS) layer and a complementary metal-oxide-semiconductor (CMOS) layer. The MEMS layer includes at least one piezoelectric layer and a conductive layer. The conductive layer is deposited on the at least one piezoelectric layer and is associated with at least one sensing electrode. The CMOS layer is deposited on the MEMS layer. Furthermore, a cavity formed in the CMOS layer includes the at least one sensing electrode
Abstract:
A process for the manufacture of semiconductor devices comprising the chemical-mechanical polishing of a substrate or layer containing at least one lll-V material in the presence of a chemical-mechanical polishing composition (Q1) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one amphiphilic non-ionic surfactant having (b1) at least one hydrophobic group; and (b2) at least one hydrophilic group selected from the group consisting of polyoxyalkylene groups comprising (b22) oxyalkylene monomer units other than oxyethylene monomer units; and (M) an aqueous medium.
Abstract:
In accordance with an embodiment a microelectromechanical system (MEMS) device including a substrate comprising a vertically extending through hole and a horizontally extending membrane structure covering the through hole, where the membrane structure comprises a plurality of upright nanostructures for providing a liquid repellent membrane surface. In other embodiments, certain methods are used for fabricating MEMS devices.
Abstract:
A method for manufacturing a micromechanical device includes providing a silicon substrate having a front side and a rear side, where a first normal of the front side deviates by a first angle from the direction of the silicon substrate; forming in the front side first and second trenches that are spaced apart from and essentially parallel to each other, with the first and second trenches extending along a direction of the deviation; forming on the front side a first etching mask that covers the front side except for a first opening area between the first and second trenches; and anisotropically etching the front side using the etching mask, thereby forming in the opening area an oblique surface having a second angle to the first normal, which approximately corresponds to the first angle.