Abstract:
The present invention relates to an apparatus for sterilization which may be applied to a medical dry sterilizer, and more particularly, to an apparatus which injects hydrogen peroxide so as to generate plasma and OH radicals which are effective in sterilization, so as to achieve the sterilization of a treated object. According to the present invention, the apparatus for sterilization comprises: a sterilizing reactor in which sterilization is performed on a treated object; a vacuuming unit which is equipped with a vacuum pump connected to the sterilizing reactor and which vacuumizes the interior of the sterilizing reactor; a hydrogen-peroxide supply unit which supplies hydrogen peroxide in a gas state to the interior of the sterilizing reactor; and a microwave-plasma generating unit which generates plasma using microwaves. The microwave-plasma generating unit is provided with an electromagnetic-wave generating source which generates microwaves; a plasma-generating unit which interconnects the hydrogen-peroxide supply unit and the sterilizing reactor such that hydrogen peroxide is supplied to the sterilizing reactor, and which generates plasma using microwaves; and a microwave guide which delivers the microwaves generated from the electromagnetic-wave generating source to the plasma-generating unit.
Abstract:
The present invention relates to an apparatus for sterilization which may be applied to a medical dry sterilizer, and more particularly, to an apparatus which injects hydrogen peroxide so as to generate plasma and OH radicals which are effective in sterilization, so as to achieve the sterilization of a treated object. According to the present invention, the apparatus for sterilization comprises: a sterilizing reactor in which sterilization is performed on a treated object; a vacuuming unit which is equipped with a vacuum pump connected to the sterilizing reactor and which vacuumizes the interior of the sterilizing reactor; a hydrogen-peroxide supply unit which supplies hydrogen peroxide in a gas state to the interior of the sterilizing reactor; and a microwave-plasma generating unit which generates plasma using microwaves. The microwave-plasma generating unit is provided with an electromagnetic-wave generating source which generates microwaves; a plasma-generating unit which interconnects the hydrogen-peroxide supply unit and the sterilizing reactor such that hydrogen peroxide is supplied to the sterilizing reactor, and which generates plasma using microwaves; and a microwave guide which delivers the microwaves generated from the electromagnetic-wave generating source to the plasma-generating unit.
Abstract:
The present invention relates to an apparatus and method for manufacturing a semiconductor light-emitting device using a neutral particle beam. According to the present invention, since the kinetic energy of the neutral particle beam is provided as a portion of the reaction energy for causing a nitride semiconductor single crystal thin film to be formed on a substrate, and the reaction energy is not provided as heat energy by heating a substrate as in the prior art, the substrate may be treated at a relatively low temperature. Furthermore, elements such as Si, Mg, and the like, which are solid elements required for doping are sprayed onto the substrate from a source which generates solid elements for doping together with the neutral particle beam to achieve high doping efficiency at a lower temperature. According to the present invention, since the substrate is treated at a low temperature, the degradation of the substrate and thin film may be prevented, and the undesired diffusion of the doping elements may be prevented to enable the manufacture of the semiconductor light-emitting device having superior light-emitting properties in a relatively easy manner.
Abstract:
A high throughput apparatus for multiple sample analysis is disclosed. The high through apparatus for multiple sample analysis may include: a laser light source; a lens array configured to focus laser irradiated by the laser light source into a plurality of focused laser beams; and a focusing unit disposed between the lens array and a sample, the focusing unit configured to focus ions produced from the sample by the plurality of focused laser beams into a plurality of ion beams. A high throughput method for multiple sample analysis may include: producing a plurality of focused laser beams by focusing laser; ionizing a sample by irradiating the plurality of focused laser beams to the sample; and producing a plurality of ion beams by focusing ions, wherein the ions are produced from the sample by the plurality of focused laser beams.
Abstract:
Disclosed is a novel method for detecting interactions of biomolecules. More particularly, the disclosed method includes (a) preparing a cell comprising (i) a first construct comprising a bait, a first labeling material and a translocation module; and (ii) a second construct comprising a prey and a second labeling material; (b) detecting the distribution of the first construct and the second construct in the cell. The present invention provides a method capable of detecting bindings and interactions occurring in a living cell in real time, and a method for screening a material that alters the binding and the interaction. The method of the present invention overcomes the disadvantages including inaccuracy and complexity of existing biomaterial interaction detection techniques. By labeling both constructs to promote accuracy, the present invention provides a novel real-time, antibody-free analysis.
Abstract:
Disclosed is a method of analyzing mass of the phosphoproteins or phosphopeptides and of analyzing phosphorylated positions at a phosphoprotein or phosphopeptide, comprising the steps of: 1) dephosphorylating at least one Ser and/or Thr residue of the phosphoprotein or phosphopeptide; 2) tagging the dephosphorylated amino acid residues with a tag having a R-L-G moiety wherein R is a nucleophilic functional group that selectively bind with dephosphorylated amino acid residues, G is selected from the group consisting of guanidine moiety or protected guanidine moiety such as a mono-N-protected guanidino group, a di-N,N'-protected guanidino group and an N'-protected guanidino group, and L is a linker linking the R and the G; and 3) subjecting the tagged proteins or peptides to mass spectrometry. The method is capable of precisely analyzing mass of phosphoproteins of trace amounts as well as positions of phosphoryated amino acids.
Abstract:
The present invention relates to methods for manufacturing manganese oxide nanotubes/nanorods using an anodic aluminum oxide (AAO) template. In the inventive methods, the manganese oxide nanotubes/nanorods are manufactured in mild conditions using only a manganese oxide precursor and an anodic aluminum oxide template without using any solvent. The nanotubes/nanorods having uniform size can be easily obtained by adsorbing the manganese oxide precursor onto the surface of the anodic aluminum oxide template by a vacuum forming process using a vacuum filtration apparatus so as to maintain the shape of nanotubes/nanorods and drying the manganese oxide nanotubes. The manganese oxide nanotubes/nanorods made according to the inventive methods can be used as economic hydrogen reservoirs, the electrode of lithium secondary batteries, or the energy reservoirs of vehicles or other transport means.
Abstract:
The present invention relates to a method for analyzing modified polypeptide sequence and modified information thereof. More precisely, the invention relates to a method for identifying modified peptide in which fragment ion signals are obtained from target peptide precursor by using tandem mass spectrometry, candidate peptides and every possible peptide fragmentation patterns thereof are designed based on the mass data thereby, match scores corresponding to each fragmentation pattern of candidate peptides are given, and then by combining each matching scores derived from possible fragmentation patterns of a candidate peptide, modified target polypeptide is identified by tandem mass data based on the provided match score. The scoring method for modified polypeptide of the present invention can greatly contribute to increasing searching efficiency of modified peptides and reliability of the searching results by integrating all scored values obtained from different fragmentation patterns of a candidate peptide.
Abstract:
The present invention relates to a method for phosphorylation site-specific labeling of phosphoproteome with a site-specific tagging reagent and analyzing of the resulting labeled one, more especially, a method for in-situ tagging of phosphorylation sites of phosphoproteins retained in polymeric gel with a nucleophilic tagging reagent. It also relates a method for generating new proteolytic cleavable sites at formerly phosphorylation sites by a proper choice of a nucleophilic tagging reagent. It also relates to a method for phosphopeptides analysis and phosphorylation site identification by in-gel digestion of the previously in-gel tagged proteins and subsequent mass analysis of the resulting peptides. The invention provides in-gel chemical tagging method for phosphoaminoacid residue of phosphoproteins retained in polymeric gel matrix. Phosphoprotein can be immobilized into gel matrix by a variety of methods such as gel electrophoresis. The immobilized phosphoproteins are retained in gel matrix during tagging reaction to phosphorylated aminoacid residue of phosphoproteins, and the resulting tagged proteins are also retained in gel matrix till following purification steps like washing of the tagging reagents are accomplished. The tagged proteins is digested by protease, and the resulting digested peptides is released from gel into solution and applied for peptide mass analysis.