Abstract:
A MEMS-based optical switch having improved characteristics and methods for manufacturing the same are provided. In accordance with one embodiment, an optical switch includes a single comb drive actuator having a deflecting beam structure and a mirror coupled to the actuator. The mirror is capable of being moved between an extended position interposed between waveguide channels and a retracted position apart from the waveguide channels. The actuator applies a force capable of deflecting the beam structure and moving the mirror to one of the extended positions or the retracted position and the beam structure returns the mirror to the other of the extended position or the retracted position in the absence of the application of force.
Abstract:
In order to easily and accurately manufacture a micromachine comprising a member which is made of a single-crystalline material and having a complicated structure, an uppermost layer (1104) of a single-crystalline Si substrate (1102) whose (100) plane is upwardly directed is irradiated with Ne atom currents from a plurality of prescribed directions, so that the crystal orientation of the uppermost layer (1104) is converted to such orientation that the (111) plane is upwardly directed. A masking member (106) is employed as a shielding member to anisotropically etch the substrate (1102) from its bottom surface, thereby forming a V-shaped groove (1112). At this time, the uppermost layer (1104) serves as an etching stopper. Thus, it is possible to easily manufacture a micromachine having a single-crystalline diaphragm having a uniform thickness. A micromachine having a complicated member such as a diagram which is made of a single-crystalline material can be easily manufactured through no junction.
Abstract:
An inventive method for the manufacture of a thin film actuated mirror array comprises the steps of: preparing an active matrix including a substrate, an array of switching devices and an array of connecting terminals; forming a first sacrificial layer including an array of empty cavities; forming an array of actuating structures, each of the actuating structures including an elastic member, a lower electrode, an electrodisplacive member, an upper electrode and a via contact; forming a second sacrificial layer including an array of empty slots; forming an array of mirrors; removing the first and the second sacrificial layer to thereby form the thin film actuated mirror array. The use of a poly-Si as the material for the first and the second sacrificial layers will ensure an easy flattening thereof and an easy removal thereof, resulting an increased otpical efficiency in the thin film actuated mirror thus formed.
Abstract:
In one aspect, the invention includes a method of forming a void region associated with a substrate, comprising: a) providing a substrate; b) forming a sacrificial mass over the substrate; c) subjecting the mass to hydrogen to convert a component of the mass to a volatile form; and d) volatilizing the volatile form of the component from the mass to leave a void region associated with the substrate. In another aspect, the invention includes a method of forming a capacitor construction, comprising: a) forming a first capacitor electrode over a substrate; b) forming a sacrificial material proximate the first capacitor electrode; c) forming a second capacitor electrode proximate the sacrificial material, the second capacitor electrode being separated from the first capacitor electrode by the sacrificial material, at least one of the first and second electrodes being a metal-comprising layer; and d) subjecting the sacrificial material to conditions which transport a component from the sacrificial material to the metal-comprising layer, the transported component leaving a void region between the first and second capacitor electrodes.
Abstract:
A microstructure comprising a substrate (1), a patterned structure (beam member) (2) suspended over the substrate (1) with an air-space (4) therebetween and supporting structure (3) for suspending the patterned structure (2) over the substrate (1). The microstructure is prepared by using a sacrificial layer (7) which is removed to form the space between the substrate (1) and the patterned structure (2) adhered to the sacrificial layer. In the case of using resin as the material of the sacrificial layer, the sacrificial layer can be removed without causing sticking, and an electrode can be provided on the patterned structure. The microstructure can have application as electrostatic actuator, etc., depending on choice of shape and composition.
Abstract:
A method for forming a microstructure includes photolithographically forming a vertically extending post on a portion of a surface of a substrate to provide a first structure. A flowable, sacrificial material is deposited over a surface of the first structure. The flowable, sacrificial materially flows off the top surface and sidewall portions of the post onto adjacent portions of the surface of the substrate to provide a second structure. A non-sacrificial material is deposited over a surface of the second structure. The non-sacrificial material is deposited to conform to the surface of the second structure. The non-sacrificial is deposited over the sacrificial material, over the sidewall portions and over the top surface of the post. The deposited sacrificial material is selectively removed while the non-sacrificial material remains to form a third structure with a horizontal member provided by the non-sacrificial material. The horizontal member is supported a predetermined distance above the surface of the substrate by a lower portion of the post. The flowable material is a flowable oxide, for example, hydrogensilsesquioxane glass, and the post has a width less than 20 .mu.m. The resulting structure, formed with a single photolithographic step, is used for supporting a capacitor deposited over it. The capacitor is formed as a sequence of deposition steps; i.e., depositing a first conductive layer over a surface of the support structure; depositing a dielectric layer over the conductive layer; and depositing a second conductive layer over the dielectric layer.
Abstract:
A micro mechanical component of the present invention comprises a base, and at least one drive portion supported on the base and relatively driving to the base, in which the drive portion is formed from a diamond layer. Thus, because the drive portion has excellent mechanical strength and modulus of elasticity, the operational performance can be greatly improved as a micro mechanical component processed in a fine shape, from the conventional level. Further, because the drive portion exhibits excellent device characteristics under severe circumstances, the range of applications as a micro mechanical component can be widely expanded from the conventional range.