Abstract:
Methods for making thin silicon layers suspended over recesses (30) in glass wafers (22). One method includes providing a thin silicon-on-insulator (SOI) wafer (21), and a glass wafer (22). The SOI wafer (21) can include a silicon oxide layer (50) disposed between a first undoped or substantially undoped silicon layer (20) and a second silicon layer (60). Recesses (30) can be formed in the glass wafer surface (24) and electrodes (38) may be formed on the glass wafer surface (24). The first silicon layer (20) of the SOI wafer (21) is then bonded to the glass wafer surface (24) having the recesses (30), and the second silicon layer (60) is subsequently removed using the silicon oxide layer (50) as an etch stop. Next, the silicon oxide layer (50) is removed. The first silicon layer (20) can then be etched to form the desired structure. In another illustrative embodiment, the first silicon layer (120) has a patterned metal layer (129) positioned adjacent the recesses (30) in the glass wafer (22). The, the second silicon layer (60) is removed using the silicon oxide layer (50) as an etch stop, and the silicon oxide layer (50) is subsequently removed. The first silicon layer (120) is then etched using the patterned metal layer (129) as an etch stop. The patterned metal layer (120) is then removed.
Abstract:
A micro-device including an insulating substrate having a recess formed on the surface thereof, and a beam-like structure made of silicon formed on the front surface of the insulating substrate to surround the recess. The beam-like structure includes at least one functional section, and the functional section has a supporting section bonded onto the insulating substrate and at least one cantilever formed integrally with the supporting section while extending across the recess. The micro device also has an electrically conductive film electrically connected with the supporting section and formed on the surface of the recess at least in a portion right under a cantilever. The electrically conductive film prevents the surface of the recess from being positively charged in the dry etching process. Thus the etching gas having positive charge is not subjected to electrical repulsion of the recess and does not impinge on the back surface of the silicon substrate, and therefore erosion of the cantilever does not occur. As a result, since the beam-like structure is formed with high accuracy in the shape and dimensions, the micro device of the present invention can improve a high reliability and a degree of freedom in design of the micro device.
Abstract:
A system and method for a micro-electrical-mechanical system (MEMS) device including a substrate and a free-standing and suspended electroplated metal MEMS structure formed on the substrate. The free-standing and suspended electroplated metal MEMS structure includes a metal mechanical element mechanically coupled to the substrate and a seed layer mechanically coupled to and in electrical communication with the mechanical element, the seed layer comprising at least one of a refractory metal and a refractory metal alloy, wherein a thickness of the mechanical element is substantially greater than a thickness of the seed layer such that the mechanical and electrical properties of the free-standing and suspended electroplated metal MEMS structure are defined by the material properties of the mechanical element.
Abstract:
An integrated circuit having an indirect sensor and a direct sensor formed on a common semiconductor substrate is disclosed. The direct sensor requires the parameter being measured to be directly applied to the direct sensor. Conversely, the indirect sensor can have the parameter being measured to be indirectly applied to the indirect sensor. The parameter being measured by the direct sensor is different than the parameter being measured by the indirect sensor. In other words, the direct sensor and indirect sensor are of different types. An example of a direct sensor is a pressure sensor. The pressure being measured by the pressure sensor must be applied to the pressure sensor. An example of an indirect sensor is an accelerometer. The rate of change of velocity does not have to be applied directly to the accelerometer. In one embodiment, the direct and indirect sensors are formed using photolithographic techniques.
Abstract:
Methods for making thin silicon layers 20 suspended over recesses 30 in glass wafers or substrates 22 are disclosed. One embodiment of the present invention includes providing a thin silicon wafer 20, and a glass wafer or substrate 22. Recesses 30 are formed in one surface 24 of the glass wafer 22, and electrodes 38 are formed in the recesses 30. The silicon wafer 20 is then bonded to the glass wafer 22 over the recesses 30. The silicon wafer 20 is then etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer 120 has a patterned metal layer 129. The silicon wafer 120 is bonded to the glass wafer 22, with the patterned metal layer 129 positioned adjacent the recesses 30 in the glass wafer 22. The silicon wafer 120 positioned adjacent the recesses 30 in the glass wafer 22. The silicon wafer 120 is selectively etched down to the metal layer 129. The metalized layer 129 may serve to seal gasses within the recessed cavities 30 of the glass wafer 22 during the silicon etching process. The metal layer 129 can then be subsequently removed.
Abstract:
The present invention discloses a integrated structure of an MEMS pressure sensor and an MEMS inertia sensor, comprising: an insulating layer formed on a substrate, a first lower electrode and a second lower electrode both formed on the insulating layer, further comprising a first upper electrode forming an air pressure-sensitive capacitor together with the first lower electrode, and a second upper electrode forming a reference capacitor together with the second lower electrode; further comprising an inertia-sensitive structure supported above the substrate by a third support part, and a fixed electrode plate forming an inertia detecting capacitor of an inertia sensor together with the inertia-sensitive structure; and a cover body which packages the inertia detecting capacitor composed of the inertia-sensitive structure and the fixed electrode plate on the substrate. The integrated structure according to the present invention integrates the MEMS inertia sensor and the MEMS pressure sensor on the same substrate, which may effectively reduce the area of the chip, so as to reduce the cost of the chip. Single packaging may complete the packaging of the entire chip and reduce the cost of the chip packaging.
Abstract:
A MEMS device includes a mass system capable of undergoing oscillatory drive motion along a drive axis and oscillatory sense motion along a sense axis perpendicular to the drive axis. A quadrature correction unit includes a fixed electrode and a movable electrode coupled to the movable mass system, each being lengthwise oriented along the drive axis. The movable electrode is spaced apart from the fixed electrode by a gap having an initial width. At least one of the fixed and movable electrodes includes an extrusion region extending toward the other of the fixed and movable electrodes. The movable electrode undergoes oscillatory motion with the mass system such that the extrusion region is periodically spaced apart from the other of the fixed and movable electrodes by a gap exhibiting a second width that is less than the first width thereby enabling capacitance enhancement between the electrodes.
Abstract:
An integrated MEMS device comprises two substrates where the first and second substrates are coupled together and have two enclosures there between. One of the first and second substrates includes an outgassing source layer and an outgassing barrier layer to adjust pressure within the two enclosures. The method includes depositing and patterning an outgassing source layer and a first outgassing barrier layer on the substrate, resulting in two cross-sections. In one of the two cross-sections a top surface of the outgassing source layer is not covered by the outgassing barrier layer and in the other of the two cross-sections the outgassing source layer is encapsulated in the outgassing barrier layer. The method also includes depositing conformally a second outgassing barrier layer and etching the second outgassing barrier layer such that a spacer of the second outgassing barrier layer is left on sidewalls of the outgassing source layer.
Abstract:
Methods for making thin silicon layers suspended over recesses (30) in glass wafers (22). One method includes providing a thin silicon-on-insulator (SOI) wafer (21), and a glass wafer (22). The SOI wafer (21) can include a silicon oxide layer (50) disposed between a first undoped or substantially undoped silicon layer (20) and a second silicon layer (60). Recesses (30) can be formed in the glass wafer surface (24) and electrodes (38) may be formed on the glass wafer surface (24). The first silicon layer (20) of the SOI wafer (21) is then bonded to the glass wafer surface (24) having the recesses (30), and the second silicon layer (60) is subsequently removed using the silicon oxide layer (50) as an etch stop. Next, the silicon oxide layer (50) is removed. The first silicon layer (20) can then be etched to form the desired structure. In another illustrative embodiment, the first silicon layer (120) has a patterned metal layer (129) positioned adjacent the recesses (30) in the glass wafer (22). The, the second silicon layer (60) is removed using the silicon oxide layer (50) as an etch stop, and the silicon oxide layer (50) is subsequently removed. The first silicon layer (120) is then etched using the patterned metal layer (129) as an etch stop. The patterned metal layer (120) is then removed.
Abstract:
The present invention discloses a integrated structure of an MEMS pressure sensor and an MEMS inertia sensor, comprising: an insulating layer formed on a substrate, a first lower electrode and a second lower electrode both formed on the insulating layer, further comprising a first upper electrode forming an air pressure-sensitive capacitor together with the first lower electrode, and a second upper electrode forming a reference capacitor together with the second lower electrode; further comprising an inertia-sensitive structure supported above the substrate by a third support part, and a fixed electrode plate forming an inertia detecting capacitor of an inertia sensor together with the inertia-sensitive structure; and a cover body which packages the inertia detecting capacitor composed of the inertia-sensitive structure and the fixed electrode plate on the substrate. The integrated structure according to the present invention integrates the MEMS inertia sensor and the MEMS pressure sensor on the same substrate, which may effectively reduce the area of the chip, so as to reduce the cost of the chip. Single packaging may complete the packaging of the entire chip and reduce the cost of the chip packaging.