Abstract:
A printed circuit arrangement for use as a compact part of the exposure control in a photographic apparatus has an insulating plate provided with a recess for a portion of or an entire prefabricated electrical or electronic component with several coplanar terminals which contact discrete coplanar conductors applied (by printing or otherwise) to one surface of the plate. An insert of insulating material is interposed between overlapping portions of one or more conductors and one or more terminals to prevent the flow of current between those conductors and those terminals which must be insulated from each other when the plate is built into a photographic apparatus. The outline of the recess conforms to the outline of the component and the insert surrounds a portion of or the entire component and is bonded or clamped to the plate to remain in requisite position.
Abstract:
Mobile ion diffusion causes a shift in the threshold voltage of non-volatile storage elements in a memory chip, such as during an assembly process of the memory chip. To reduce or avoid such shifts, a coating can be applied to a printed circuit board substrate or a leader frame to which the memory chip is surface mounted. An acrylic resin coating having a thickness of about 10 μm may be used. A memory chip is attached to the coating using an adhesive film. Stacked chips may be used as well. Another approach provides metal barrier traces over copper traces of the printed circuit board, within a solder mask layer. The metal barrier traces are fabricated in the same pattern as the copper traces but are wider so that they at least partially envelop and surround the copper traces. Corresponding apparatuses and fabrication processes are provided.
Abstract:
An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
Abstract:
An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
Abstract:
An electronic device is mounted on a wiring board, which includes: a substrate having through holes, and lands extending on surfaces of the substrate and adjacent to openings of the through holes. Further, at least one coating layer is provided, which coats at least one part of an outer peripheral region of the at least one land, in order to cause that the at least one part is separated from a lead-less solder, thereby preventing any peel of the land from the surface of the substrate.
Abstract:
In order to secure wired components of large mass or non-uniform mass distribution safely on a circuit board, without the components needing, as currently usual, to be glued onto the circuit board or held on the circuit board with snap-in holders, integrated into a connection bore for receiving a connection wire, or pin, of an electronic component a holding mechanism for secured holding of the connection wire, or pin. The holding mechanism represents a narrowing in the connection bore to a diameter smaller than that of the connection wire, or pin. The holding mechanism can be implemented, for example, by a connection bore embodied in the form of a bore drilled from one side of the circuit board, not completely through the circuit board. In such case, a edge remains as a narrowing, which securely seizes the connection pin of the relevant component and holds the component fixed to the circuit board.
Abstract:
An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
Abstract:
An electronic device is mounted on a wiring board, which includes: a substrate having through holes, and lands extending on surfaces of the substrate and adjacent to openings of the through holes. Further, at least one coating layer is provided, which coats at least one part of an outer peripheral region of the at least one land, in order to cause that the at least one part is separated from a lead-less solder, thereby preventing any peel of the land from the surface of the substrate.
Abstract:
An electronic device is mounted on a wiring board, which includes: a substrate having through holes, and lands extending on surfaces of the substrate and adjacent to openings of the through holes. Further, at least one coating layer is provided, which coats at least one part of an outer peripheral region of the at least one land, in order to cause that the at least one part is separated from a lead-less solder, thereby preventing any peel of the land from the surface of the substrate.