Abstract:
A film-peeling apparatus is adapted to peel a protective film on a surface of a substrate. The surface of the substrate has a bare area which is not covered by the protective film. The film-peeling apparatus includes a punching member, a connector connected to the punching member, and a controller. The controller is configured for driving, through the connector, the punching member to punch at predetermined positions nearby or on a first edge of the protective film adjacent to the bare area.
Abstract:
A multi-layer circuit board includes a first circuit board, conducting blocks, a second circuit board, and conducting recesses. The first circuit board has a first conductor layer mounted on the first circuit board. The conducting blocks are mounted on the first circuit board and electrically connected to the first conductor layer. The second circuit board has a second conductor layer mounted thereon and facing the first circuit board. The conducting recesses are formed in the second circuit board, electrically connected to the second conductor layer, and corresponding to the respective conducting blocks. The insulating layer is mounted between the first conductor layer and the second conductor layer. The second circuit board is on the first circuit board, the conducting blocks are respectively mounted in the conducting recesses to electrically connect the first conductor layer and the second conductor layer.
Abstract:
A printed circuit board (PCB) test fixture includes a substrate, a first insulation layer formed on the substrate, a conductor layer formed on the first insulation layer and electrically connected to the upper electrodes through at least one first connection member, a second insulation layer formed on the first insulation layer, and multiple conductive cones arranged on the second insulation layer in a matrix form. A part of the conductive cones is electrically connected to the conductor layer through at least one second connection member. The circuit layout of the conductor layer, the at least one first connection member and the at least one second connection member is employed to supply testing power to a part of the conductive cones and an adjustable arrangement of the conductive cones to enhance density of test probes upon electrical testing.
Abstract:
A multilayer printed circuit board includes a first circuit board, a second circuit board and bonding films. The first circuit board includes a first dielectric layer, a first wiring pattern layer, a plurality of conductive blocks and a plurality of solder balls. The first wiring pattern layer is formed on a first surface of the first dielectric layer and the conductive blocks are formed on a second surface of the first dielectric layer. The solder balls are formed on a surface of the first wiring pattern layer. The second circuit board includes a second dielectric layer, a second wiring pattern layer, second conductive blocks and conductive pillars. The second wiring pattern layer is formed on a third surface of the second dielectric layer and the second conductive blocks are formed on a fourth surface thereof. The conductive pillars are formed on the second wiring pattern layer.
Abstract:
A method for manufacturing a circuit board with a buried element having high density pin count, wherein a micro copper window formed in a first circuit by patterned dry film electroplating is easily controlled less than 50 μm so that the micro conduction holes formed after the laser drilling each has a diameter greatly shrunk less than 50 μm so as to highly increase density of the micro conduction holes, thereby facilitating in burial of the buried element with the high density pin count. Additionally, by disposing the micro conduction holes in the same elevation, optically aligning a fixing position for the buried element can be controlled precisely.
Abstract:
A method for manufacturing microthrough-hole includes electroplating a metal layer on a carrier plate, patterning the metal layer to form a first circuit having copper pads, covering the first circuit with a photoresist layer and not covering the copper window between two of the copper pads, etching the metal layer beneath the copper window and removing the photoresist layer, sequentially forming an insulation layer and a second circuit on the first circuit and the copper window, the second circuit layer having a stop pad corresponding to the copper window, removing the carrier plate, upward drilling through the insulation layer between the stop pad and the copper window to form a microthrough-hole beneath the stop pad, and forming a conductive layer in the microthrough-hole to form the microthrough-hole connecting the first and second circuits. The microthrough-hole and its occupied area is greatly reduced, thereby achieving high circuit density.
Abstract:
A method of manufacturing a chip support board structure which includes the steps of forming a metal substrate structure, forming a photo resist pattern, etching the metal substrate structure to form a paddle, removing the photo resist pattern, pressing an insulation layer against the paddle, polishing the insulation layer, forming a circuit layer and forming a solder resist is disclosed. The metal substrate structure is formed by sandwiching a block layer with two metal substrate layers, multilayer. The metal substrate structure is etched under control to an effective depth such that each paddle thus formed has the same shape and depth. Therefore, the method of the present invention can be widely applied to the general mass production processes to effectively solve the problems in the prior arts due to depth differences, such offset, position mismatch and peeling off in the chip support board.
Abstract:
Disclosed is a method of final defect inspection, including preparing a final defect inspection apparatus which includes a host device, a microscope, a bar code scanner, a support tool and a signal transceiver, using the host device to calibrate an original point in an outline of the circuit board based on a plurality of original mark positions generated by an electromagnetic pen, using the electromagnetic pen to mark each defect position on the inspection region on the circuit board where any defect is found through the microscope, using the signal transceiver to receive and transmit each defect position to the host device, and using the host device to calculate the coordinate of a scrap region based on a relative position between the original point and each defect position so as to generate a shipment file.
Abstract:
Disclosed is a method of final defect inspection, including preparing a final defect inspection apparatus which includes a host device, a microscope, a bar code scanner, a support tool and a signal transceiver, using the host device to calibrate an original point in an outline of the circuit board based on a plurality of original mark positions generated by an electromagnetic pen, using the electromagnetic pen to mark each defect position on the inspection region on the circuit board where any defect is found through the microscope, using the signal transceiver to receive and transmit each defect position to the host device, and using the host device to calculate the coordinate of a scrap region based on a relative position between the original point and each defect position so as to generate a shipment file.
Abstract:
A laminate circuit board structure which includes a first circuit metal layer, a first insulation layer, at least one second circuit metal layer, at least one second insulation layer and a support frame is disclosed. The total thickness of the laminate circuit board structure is less than 150 μm. The support frame provided at the outer edge of the co-plane surface formed by the first circuit metal layer and the first insulation layer does not cover the first circuit metal layer, and is formed of at least one metal material. The support frame provides physical support for the entire board structure without influence on the circuit connection so as to prevent the laminate circuit board structure from warping.