Abstract:
PURPOSE: A capacitor of a semiconductor device is provided to prevent transformation of a lower electrode and a decrease of characteristics of a dielectric thin film by controlling the oxidation of a ruthenium electrode as the lower electrode even if an atomic layer deposition(ALD) process is performed by using a strong oxidant like O3. CONSTITUTION: An upper electrode(50) and a lower electrode(46) are made of elements of a platinum group. The dielectric thin film(48) is interposed between the upper electrode and the lower electrode. A buffer layer(47) is composed of III-group, IV-group or XIII-group metal oxide materials, formed between the lower electrode and the dielectric thin film.
Abstract:
PURPOSE: A novel group IV metal precursor is provided which displays superior volatility and thermal characteristics, has excellent chemical stability for hydrolysis, and is particularly suitable for the formation of a multi-component metal oxide thin film comprising a group IV metal such as titanium, and a chemical vapor deposition method using the same is provided. CONSTITUTION: The metal organic precursor for manufacturing a metal oxide thin film consists of a negative bivalent tridentate ligand(L) represented as in the following Formula 1 and a quadrivalent group IV metal(M), and represented as M(L)2:£Formula 1|where each of R1 and R2 are linear or branched alkyl groups having carbon numbers of 1 to 8, and R3 is a linear or branched alkylene group having carbon numbers of 1 to 8, wherein the quadrivalent group IV metal(M) is Ti. The chemical vapor deposition method is characterized in that a metal oxide thin film is formed by using a complex of a quadrivalent IV group metal(M) and a chemical formula M(L)2 consisting of a negative bivalent tridentate ligand(L) represented as in the following Formula 1 as a quadrivalent IV group metal precursor:£Formula 1|where each of R1 and R2 are linear or branched alkyl groups having carbon numbers of 1 to 8, and R3 is a linear or branched alkylene group having carbon numbers of 1 to 8, wherein a complex of formula Ti(L)2 in which the quadrivalent IV group metal(M) is Ti is used as a titanium precursor.
Abstract:
반도체 기판 상에 전하 트랩층을 가지는 전하 트랩형 반도체 메모리 소자 및 그 제조 방법이 개시되어 있다. 개시된 전하 트랩형 메모리 반도체 메모리 소자 제조 방법은, (가) 증착하고자 하는 기판 표면에 제1전구체 물질을 도포하고 이를 산화시켜 절연물질로 된 제1층을 형성하는 단계와; (나) 제1층 상에 금속성의 제2전구체 물질을 도포하는 단계와; (다) 제2전구체 물질이 도포된 표면에 제1전구체 물질을 공급하여, 일부 위치의 제2전구체 물질을 제1전구체 물질로 치환시키는 단계와; (라) (다) 단계에서 얻어지는 제1 및 제2전구체 물질을 산화시켜 절연물질 및 금속 불순물로 된 제2층을 형성하는 단계;를 포함하며, (가) 내지 (라) 단계까지의 과정을 적어도 1회 이상 진행하여, 절연물질내에 금속 불순물이 고립된 구조의 전하 트랩층을 형성하는 것을 특징으로 한다.
Abstract:
본 발명은 탄소나노튜브(CNT)로부터 탄소불순물을 선택적으로 제거하는 방법에 관한 것으로, 밀폐된 공간 내 진공에서 황(sulfur)과 합성된 탄소나노튜브(CNT)에 부착된 불순물을 황화 반응시켜 제거시키는 것을 특징으로 하며, 더욱 상세하게는 탄소나노튜브 벽은 황과 반응하지 않고, 오직 탄소나노튜브에 부착된 탄소불순물만이 황화반응(C+2S-->CS 2 )하여 비정질 탄소만을 선택적으로 제거되는 정제방법으로 디바이스에 합성된 탄소나노튜브(CNT)로부터 탄소불순물을 황화반응에 의하여 선택적으로 제거하는 방법에 관한 것이다. 황화(Sulfidation), 탄소나노튜브(CNT), 전계효과트랜지스터(FET), 정제(Purification)
Abstract:
A method for eliminating carbonaceous impurities from carbon nano-tubes(CNT) is provided to purify CNT combined with sulfur without damage or modification of CNT by selectively removing the impurities adhered to sulfur combined CNT through sulfidization in a sealed space under vacuum condition. The method includes: first step of preparing carbon nano-tubes and sulfur in a sealed space; second step of heating the sulfur to higher than the temperature for sulfidization of carbonaceous impurities deposited on the carbon nano-tubes; and third step of removing the carbonaceous impurities from the carbon nano-tubes through sulfidization. The sulfidization temperature is higher than 150deg.C. The sulfur contained in the sealed space is a solid form of sulfur. The first step further contains formation of vacuum condition by exhausting air out of the sealed space. The second step is carried out by maintaining temperature of about 300deg.C for about 30 minutes.
Abstract:
본 발명은 반도체 소자에 사용되는 비정질 고유전 박막 및 그 제조 방법에 관한 것이다. 반도체 소자에 사용되는 유전막에 있어서, 상기 유전막은 Bi, Ti, Al 및 O를 포함하는 비정질 유전막을 제공하여, DRAM과 같은 소자의 캐패시터의 유전막 물질로 BTAO계 비정질 박막을 사용함으로써, 유전상수가 25이상이며, 유전 박막의 물리적 두께를 줄일 때 나타나는 누설 전류의 증가를 방지할 수 있어, 반도체 소자의 집적화에 매우 유용하다.
Abstract:
A method of manufacturing a memory device is provided to secure the stability of erase characteristics by using a blocking oxide layer with a negative fixed oxide charge. A tunneling oxide layer(22), a charge storing layer(23) and a blocking oxide layer(24) are sequentially formed on a semiconductor substrate(20). A heat treatment is performed on the resultant structure under O2, RuO or NH3 gas conditions in order to obtain a negative fixed oxide charge from the blocking oxide layer. A gate electrode layer is formed on the blocking oxide layer. The substrate is partially exposed to the outside by etching selectively the tunneling oxide layer, the charge storing layer, the blocking oxide layer and the gate electrode layer. First and second doped regions are formed in the exposed substrate by using an ion implantation.
Abstract:
A low temperature growth method of carbon nanotubes, which can grow single-walled carbon nanotubes of high quality in a relatively low temperature range, is provided. A low temperature growth method of single-walled carbon nanotubes comprises the steps of: preparing a vacuum chamber(10); preparing a substrate(20) on which a catalytic metal(22) is deposited within the vacuum chamber; vaporizing H2O to supply the vaporized H2O into the vacuum chamber; generating H2O plasma discharge within the vacuum chamber; and supplying a source gas into the vacuum chamber in a flux range of 20 to 60 sccm to grow carbon nanotubes(30) on the substrate in the H2O plasma atmosphere. The H2O plasma has a power controlled to 80 W or less. The carbon nanotubes are grown in a temperature range of 500 deg.C or less for 10 to 600 seconds. The catalytic metal is at least one selected from the group consisting of Fe, Ni and Co. The source gas is at least one selected from the group consisting of C2H2, CH4, C2H4, C2H6 and CO. The substrate is a substrate made of Si, SiO2 or glass.
Abstract translation:提供了一种能够在较低温度范围内生长高质量单壁碳纳米管的碳纳米管的低温生长方法。 单壁碳纳米管的低温生长方法包括以下步骤:制备真空室(10); 制备在真空室内沉积有催化金属(22)的基底(20); 蒸发H 2 O以将蒸发的H 2 O供应到真空室中; 在真空室内产生H 2 O等离子体放电; 并在20〜60sccm的通量范围内将原料气体供给到真空室中,以在H 2 O等离子体气氛中在基板上生长碳纳米管(30)。 H2O等离子体的功率控制在80W以下。 碳纳米管在500℃以下的温度范围内生长10〜600秒。 催化剂金属是选自Fe,Ni和Co中的至少一种。源气体是选自由C 2 H 2,CH 4,C 2 H 4,C 2 H 6和CO组成的组中的至少一种。衬底是由Si ,SiO2或玻璃。