Abstract:
PROBLEM TO BE SOLVED: To provide a surface-mounted PPTC device having a welding plate which is integrally formed or is discretely formed, and then is attached. SOLUTION: A surface mount circuit protecting device 10 includes a laminated PTC resistive element 12, having first and second major surfaces and a thickness between them. A first electrode layer which substantially has the same area as that of the first major surface is made of a first metal material of a type adapted to be soldered to a printed circuit board. A second electrode layer, formed on the second major surface, includes a structure forming or defining a weld plate 18. The device is preferably surface mounted on a printed circuit board assembly and forms a battery protection circuit connected to a battery/cell through battery strap interconnections. One of the battery strap interconnections is micro-spot welded to the welding plate of the device. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
An information handling system may include a printed circuit board and a plurality of connectors each electrically and mechanically coupled to the printed circuit board, each connector of the plurality of connectors configured to receive a respective modular information handling resource in order to electrically couple, via electrically-conductive pins of such connector, the respective modular information handling resource to the printed circuit board. Each connector may include a body comprising electrically non-conductive material and including a receptacle formed therein for receiving a mating edge connector of the respective modular information handling resource, a bus bar comprising electrically conductive material, other than the electrically-conductive pins of such connector, disposed within or upon the body and extending through at least a portion of the body, and an electrical termination electrically coupled to the bus bar.
Abstract:
The disclosure provides a power supply including a high heat-dissipation circuit board assembly system in which a rack is installed on a circuit board so as to be connected to a transformer. Heat produced when electronic components installed on the circuit board are actuated may be conducted and dissipated thereby. The efficiency and the heat conductivity effect of the power supply may be further enhanced by distributing the amount and the flowing direction of the current from the transformer.
Abstract:
A battery system having a bladed fuse connector and a method of operation of the bladed fuse connector are provided. The system may, in certain embodiments, include a printed circuit board (PCB) and a high current interconnect. The high current interconnect may be mounted to and extending upward from the PCB. The battery system may also include a fuse. The fuse may limit an amount of current flowing through the battery system. Additionally, the battery system may include a bladed fuse connector coupled between the high current interconnect and the fuse. The bladed fuse connector may carry a current between the high current interconnect and the fuse. To that end, the bladed fuse connector may include an S-shaped bend between the high current interconnect and the fuse.
Abstract:
A method of manufacturing a battery module for use in a vehicle is presented. The method may include disposing battery cells into a lower housing and disposing a lid assembly over the battery cells. The lid assembly may include a lid and bus bar interconnects disposed on the lid. The method may also include disposing a printed circuit board (PCB) assembly onto the lid assembly and electrically coupling portions of the lid assembly, portions of the PCB assembly, and the battery cells to each other.
Abstract:
A printed circuit board (PCB) assembly includes a PCB and a high current interconnect mounted on the PCB. The high current interconnect is configured to electrically couple a first high current bladed component, a second high current bladed component, and a trace disposed on the PCB. The high current interconnect includes feet made of a conductive material that are coupled to the PCB. The trace is coupled to the feet via a weld.
Abstract:
Disclosed herein are a printed circuit board, a manufacturing method thereof, and a semiconductor package including the printed circuit board. The printed circuit board includes a base substrate including a plurality of circuit patterns, a cavity formed above the base substrate, a pad embedded in the base substrate and being exposed through the substrate bottom surface of the cavity, and an electronic component mounted in the cavity and electrically connected to the pad.According to the present invention, a cavity having a predetermined depth is formed in a base substrate of a printed circuit board so as to mount an electronic component therein, such that a gap between an upper semiconductor package and a lower semiconductor package may be obtained even if pitches between the balls are decreased for high density and high performance of the upper semiconductor package in the manufacturing of a semiconductor package having a PoP structure.
Abstract:
A bus bar including a first end comprising a first material and a second end comprising a second material and a method of manufacture are provided. The first end is designed to be coupled to a terminal of a first battery cell of a battery module and includes a first collar disposed on the first end designed to receive and surround the terminal of the first battery cell of the battery module. The second end is designed to be coupled to a terminal of a second battery cell of the battery module and includes a second collar disposed on the second end designed to receive and surround the terminal of the second battery of the battery module. The first and second batteries of the battery module are adjacent to one another. Moreover, the bus bar includes a joint electrically and mechanically coupling the first end and the second end.
Abstract:
A battery module includes a housing configured to hold prismatic battery cells within a space defined by four interior walls of the housing. The housing includes a first interior wall that includes partitions extending upwards from a bottom of the housing and a second interior wall that includes partitions extending upwards from the bottom of the housing. The first interior wall faces opposite the second interior wall. The partitions disposed on the first interior wall and the partitions disposed on the second interior wall define slots between adjacent partitions, where each of the slots increases in width between the adjacent partitions from the bottom of the housing upwards. Each of the slots is configured to retain one of the prismatic battery cells.
Abstract:
A high speed flexible interconnect cable for an electronic assembly includes a number of conductive layers and a number of dielectric layers. Conductive signal traces, located on the conductive layers, combine with the dielectric layers to form one or more high speed electrical transmission line structures. The cable can be coupled to electronic components using a variety of connection techniques. The cable can also be terminated with any number of known or standardized connector packages.