Abstract:
Monitoring of a core logic internal voltage regulator output is performed to detect, alarm and put an integrated circuit device into a safe mode when the voltage on the core logic exceeds a safe operating voltage value. This allows putting the integrated circuit devise into a predictable, detectable and safe mode, and to alarm the over-voltage condition to a system monitor to alert on a fault and subsequent fault disposition.
Abstract:
An integrated circuit device has a digital device (600) operating at an internal core voltage (Vint); a linear voltage regulator (510); and an internal switched mode voltage regulator (180) controlled by the digital device and receiving an external supply voltage (Vext) being higher than the internal core voltage through at least first and second external pins (140a, 140b) and generating the internal core voltage, wherein the internal switched mode voltage regulator is coupled with at least one external component (182) through at least one further external pin (140c) of the plurality of external pins.
Abstract:
System and method for securing sensor data in a computer system that includes a host processor and memory that stores an operating system, and an embedded controller coupled to the host processor. The embedded processor receives sensor data for a user from at least one sensor, and encrypts and/or digitally signs the sensor data, thereby generating protected sensor data, or performs pattern recognition on the sensor data, thereby generating user identification data. The embedded processor then sends the protected sensor data or the user identification data to the operating system or another process coupled to the computer system. The protected sensor data or the user identification data are used for secure transmission of the sensor data.
Abstract:
A microcontroller has a timebase (110) driven by a clock signal, wherein the timebase has a reset input and an output coupled with a comparator (140). The comparator is further coupled with a register (150) and is operable to generate a synchronization output (sync out) signal if the timebase matches the register value. The microcontroller further has a first multiplexer (250) receiving the synchronization output signal from the comparator and further receiving at least one event signal generated by a unit other than the timebase, wherein the first multiplexer is operable to select either the synchronization output signal or the at least one event signal as a timebase synchronization output signal (260).
Abstract:
A plurality of devices under test (DUT) are arranged in a strip tester having a temperature controlled heater block. Each DUT has a respective set of electrical test probes and a thermally conductive test probe for electrically and thermally coupling, respectively, of the strip tester to the DUTs. Temperature measurement of each of the plurality of DUTs is performed by a temperature measuring device. The temperature measuring device can be part of the test board of the strip tester and will be in thermal communications with the DUT through the thermally conductive test probe, or temperature of die DUT can be measurement with an RTD embedded in the thermally conductive test probe, thereby providing faster thermal response time.
Abstract:
Detection of an increase in a mismatch of an antenna of a radio frequency (RF) device and/or a change in a capacitance value of the antenna indicates proximity of a body to the antenna. Upon detection of proximity of a body to the antenna, reduction of transmit power of the RF device may be done to meet Specific Absorption Rate (SAR) level regulations.
Abstract:
Precision measurement of a period(s) of an embedded clock oscillator using a charge time measurement unit (CTMU) maintains a desired frequency accuracy of the embedded clock oscillator over a range of time, temperature and operating condition changes. The CTMU determines the free running frequency of the embedded clock oscillator and provides very accurate frequency (period) information for confirmation that a desired frequency, e.g., within 0.25 percent of the desired frequency, is running or an indication of how much and which direction to adjustment the frequency of the clock oscillator to maintain the frequency precision desired. Automatic frequency adjustment of the embedded clock oscillator may be implemented so as to maintain the desired precision frequency thereof. Temperature and voltage compensation profiles for maintaining the accuracy of the CTMU may be stored in a table, e.g., nonvolatile memory, for a further improvement in absolute frequency accuracy of the embedded clock oscillator.
Abstract:
Precision measurement of a period(s) of an embedded clock oscillator using a charge time measurement unit (CTMU) maintains a desired frequency accuracy of the embedded clock oscillator over a range of time, temperature and operating condition changes. The CTMU determines the free running frequency of the embedded clock oscillator and provides very accurate frequency (period) information for confirmation that a desired frequency, e.g., within 0.25 percent of the desired frequency, is running or an indication of how much and which direction to adjustment the frequency of the clock oscillator to maintain the frequency precision desired. Automatic frequency adjustment of the embedded clock oscillator may be implemented so as to maintain the desired precision frequency thereof. Temperature and voltage compensation profiles for maintaining the accuracy of the CTMU may be stored in a table, e.g., nonvolatile memory, for a further improvement in absolute frequency accuracy of the embedded clock oscillator.
Abstract:
At least one N-well implant having a different doping level is formed in a silicon substrate (202; 402) by first creating a "zero" layer (222) by etching the substrate with an alignment target (220) for aligning future process masks thereto. This alignment target is outside of any active device area. By using at least one N-well (204b; 404a) implant having a different doping level in combination with the substrate, a graded junction in the drift area (204b, 204a; 404a, 402) of a metal oxide semiconductor (MOS) field effect transistor (FET) can be created and a pseudo LDD structure may be realized thereby.
Abstract:
An integrated circuit device, in accordance with embodiments as claimed includes a central processing core; and a plurality of peripherals operably coupled to the RISC CPU core. In some embodiments, the plurality of peripherals include at least one configurable logic cell peripheral having more inputs than input-output connections on the integrated circuit device. In some embodiments, the inputs include one or more inputs from one or more integrated circuit subsystems.