OPEN CAVITY PACKAGE USING CHIP-EMBEDDING TECHNOLOGY
    61.
    发明申请
    OPEN CAVITY PACKAGE USING CHIP-EMBEDDING TECHNOLOGY 有权
    使用芯片嵌入技术的开放封装

    公开(公告)号:US20170015548A1

    公开(公告)日:2017-01-19

    申请号:US14963362

    申请日:2015-12-09

    Abstract: A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.

    Abstract translation: 一种以面板格式制造具有开口腔(110a)的封装半导体器件(100)的方法; 将具有平垫(230)和对称放置的垂直柱(231)的金属片的面板尺寸网格放置(处理201)在粘合剂载带上。 将具有传感器系统的半导体芯片(工艺202)面朝下地附接到带上; 层压(工艺203)和减薄(工艺204)低CTE绝缘材料(234)以填充芯片和网格之间的间隙; 翻转(过程205)组装以去除胶带; 等离子体清洁组件正面,溅射和图案化(工艺206)跨组合均匀的金属层和任选的电镀(工艺209)金属层以形成重新布线迹线和扩展的接触垫用于组装; 层压(工艺212)跨板的绝缘加强件; 在加强件中打开(过程213)空腔以接近传感器系统; 并通过切割金属片来分割(处理214)包装的装置。

    SEMICONDUCTOR DEVICE PACKAGE WITH THERMAL PAD

    公开(公告)号:US20230136784A1

    公开(公告)日:2023-05-04

    申请号:US17515176

    申请日:2021-10-29

    Abstract: A described example includes: a package substrate having a die pad with a die side surface and having an opposite backside surface, having leads arranged along two opposite sides and having die pad straps extending from two opposing ends of the die pad. The leads lie in a first plane, a portion of the die pad straps lie in a second plane that is spaced from the first plane and located closer to the die pad, and the die pad lies in a third plane that is spaced from and parallel to the second plane in a direction away from the first plane. A semiconductor die is mounted to the die side surface and mold compound covers the semiconductor die, a portion of the leads, and the die side surface of the die pad, and the backside surface of the die pad exposed from the mold compound.

    FLIP CHIP PACKAGED DEVICES WITH THERMAL INTERPOSER

    公开(公告)号:US20230059142A1

    公开(公告)日:2023-02-23

    申请号:US17404765

    申请日:2021-08-17

    Abstract: In a described example, an apparatus includes: a package substrate having a die mount surface; semiconductor die flip chip mounted to the package substrate on the die mount surface, the semiconductor die having post connects having proximate ends on bond pads on an active surface of the semiconductor die, and extending to distal ends away from the active surface of the semiconductor die and connected to the package substrate by solder joints; a thermal interposer comprising a thermally conductive material positioned over and in thermal contact with a backside surface of the semiconductor die; and mold compound covering a portion of the package substrate, a portion of the thermal interposer, the semiconductor die, and the post connects, the thermal interposer having a surface exposed from the mold compound.

    Fan-out electronic device
    70.
    发明授权

    公开(公告)号:US11410875B2

    公开(公告)日:2022-08-09

    申请号:US16225875

    申请日:2018-12-19

    Abstract: An electronic device (100) includes a substrate (110) and an integrated circuit (120) provided on the substrate (110) having a surface facing away from the substrate (110). An insulating layer (150) extends over the substrate (110) and around the integrated circuit (120) to define an interface (154) between the insulating layer (150) and the integrated circuit (120). An electrically conductive via (130) is provided on the surface of the integrated circuit (120). An insulating material (140) extends over the via (130) and includes an opening (142) exposing a portion of the via (130). A repassivation member (162) extends over the insulating layer (150) and has a surface (164) aligned with the interface (154). An electrically conductive redistribution member (181) is electrically connected to the via (130) and extends over the repassivation member (162) into contact with the insulating layer (150).

Patent Agency Ranking