Epi-Poly Etch Stop for Out of Plane Spacer Defined Electrode
    63.
    发明申请
    Epi-Poly Etch Stop for Out of Plane Spacer Defined Electrode 有权
    用于平面间隔定子电极的Epi-Poly蚀刻停止

    公开(公告)号:US20160137485A1

    公开(公告)日:2016-05-19

    申请号:US14201453

    申请日:2014-03-07

    Abstract: In one embodiment, a method of forming an out-of-plane electrode includes forming an oxide layer above an upper surface of a device layer, etching an etch stop perimeter defining trench extending through the oxide layer, forming a first cap layer portion on an upper surface of the oxide layer and within the etch stop perimeter defining trench, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the deposited first material portion, and vapor releasing a portion of the oxide layer with the etch stop portion providing a lateral etch stop.

    Abstract translation: 在一个实施例中,形成平面外电极的方法包括在器件层的上表面上形成氧化物层,蚀刻限定延伸穿过氧化物层的沟槽的蚀刻停止周界,在第一帽层部分上形成 氧化物层的上表面,并且在蚀刻停止周界内限定沟槽,蚀刻延伸穿过第一盖层部分并停止在氧化物层处的第一电极周界,限定沟槽,在第一电极周界限定沟槽内沉积第一材料部分,沉积 在沉积的第一材料部分上方的第二盖层部分,以及用蚀刻停止部分提供横向蚀刻停止物的一部分氧化物层的蒸气。

    Micromechanical device including N-type doping for providing temperature compensation and method of designing thereof
    64.
    发明授权
    Micromechanical device including N-type doping for providing temperature compensation and method of designing thereof 有权
    包括用于提供温度补偿的N型掺杂的微机械装置及其设计方法

    公开(公告)号:US08558643B2

    公开(公告)日:2013-10-15

    申请号:US13468052

    申请日:2012-05-10

    Abstract: The invention relates to a micromechanical device comprising a semiconductor element capable of deflecting or resonating and comprising at least two regions having different material properties and drive or sense means functionally coupled to said semiconductor element. According to the invention, at least one of said regions comprises one or more n-type doping agents, and the relative volumes, doping concentrations, doping agents and/or crystal orientations of the regions being configured so that the temperature sensitivities of the generalized stiffness are opposite in sign at least at one temperature for the regions, and the overall temperature drift of the generalized stiffness of the semiconductor element is 50 ppm or less on a temperature range of 100° C. The device can be a resonator. Also a method of designing the device is disclosed.

    Abstract translation: 本发明涉及一种微机械装置,其包括能够偏转或谐振并且包括具有不同材料特性的至少两个区域的半导体元件和功能性耦合到所述半导体元件的驱动或感测装置。 根据本发明,所述区域中的至少一个包括一种或多种n型掺杂剂,并且所述区域的相对体积,掺杂浓度,掺杂剂和/或晶体取向被构造成使得广义刚度的温度敏感度 在区域的至少一个温度下符号相反,半导体元件的整体刚度的总体温度漂移在100℃的温度范围内为50ppm以下。该器件可以是谐振器。 还公开了一种设计该设备的方法。

    SWITCH AND METHOD FOR MANUFACTURING THE SAME, AND RELAY
    65.
    发明申请
    SWITCH AND METHOD FOR MANUFACTURING THE SAME, AND RELAY 审中-公开
    开关及其制造方法和继电器

    公开(公告)号:US20110209970A1

    公开(公告)日:2011-09-01

    申请号:US13029898

    申请日:2011-02-17

    Abstract: A switch and a relay include a contact with a smooth contacting surface. A side surface of a fixed contact faces a side surface of a movable contact. The fixed contact has an insulating layer and a base layer stacked on a fixed contact substrate, and a first conductive layer formed thereon through electrolytic plating. The side surface of the first conductive layer that faces the movable contact becomes the fixed contact (contacting surface). The movable contact has an insulating layer and a base layer stacked on the movable contact substrate, and a movable contact formed thereon through electrolytic plating. A side surface of a second conductive layer that faces the fixed contact becomes the movable contact (contacting surface). The fixed contact and the movable contact have surfaces that contact the side surfaces of the mold portion when growing the first and second conductive layers through electrolytic plating.

    Abstract translation: 开关和继电器包括具有光滑接触表面的触点。 固定触点的侧表面面对活动触点的侧表面。 固定触点具有层叠在固定接触基板上的绝缘层和基层,以及通过电解电镀形成在其上的第一导电层。 第一导电层的面对可动触点的侧表面成为固定触点(接触面)。 可动触头具有堆叠在可动触点基板上的绝缘层和基极层,以及通过电解电镀形成的可动触点。 面对固定触点的第二导电层的侧表面成为可动触头(接触面)。 固定触点和可动触点具有通过电解电镀生长第一和第二导电层时与模具部分的侧表面接触的表面。

    Methods for manufacturing MEMS sensor and thin film thereof with improved etching process
    66.
    发明授权
    Methods for manufacturing MEMS sensor and thin film thereof with improved etching process 有权
    用于制造具有改进的蚀刻工艺的MEMS传感器及其薄膜的方法

    公开(公告)号:US07998776B1

    公开(公告)日:2011-08-16

    申请号:US12910801

    申请日:2010-10-23

    Applicant: Gang Li Wei Hu

    Inventor: Gang Li Wei Hu

    Abstract: A method for manufacturing a MEMS sensor and a thin film thereof includes steps of etching a top surface of a single-crystal silicon wafer in combination of a deposition process, an isotropic DRIE process, a wet etching process and a back etching process in order to form a pressure-sensitive single-crystal silicon film, a cantilever beam, a mass block, a front chamber, a back chamber and trenches connecting the front and the back chambers. The single-crystal silicon film is prevented from etching so that the thickness thereof can be well controlled. The method of the present invention can be used to replace the traditional method which forms the back chamber and the pressure-sensitive single-crystal silicon film from the bottom surface of the silicon wafer.

    Abstract translation: MEMS传感器及其薄膜的制造方法包括以下步骤:结合沉积工艺,各向同性DRIE工艺,湿蚀刻工艺和背蚀刻工艺来蚀刻单晶硅晶片的顶表面,以便 形成压敏单晶硅膜,悬臂梁,质量块,前室,后室和连接前室和后室的沟槽。 防止单晶硅膜蚀刻,从而可以良好地控制其厚度。 本发明的方法可以用于代替从硅晶片的底表面形成后室和压敏单晶硅膜的传统方法。

    Episeal pressure sensor and method for making an episeal pressure sensor

    公开(公告)号:US06928879B2

    公开(公告)日:2005-08-16

    申请号:US10375645

    申请日:2003-02-26

    Abstract: A method for making a pressure sensor by providing a wafer including a base silicon layer, a buried sacrificial layer, and a top silicon layer. The top silicon layer is arranged over the buried sacrificial layer and the buried sacrificial layer is arranged over the base silicon layer. Etching vents through the top silicon layer to the buried sacrificial layer and removing a portion of the buried sacrificial layer. Depositing silicon to seal the vents and arranging a strain gauge or a capacitance contact on the wafer. A method for making a pressure sensor including providing a bulk wafer and depositing a sacrificial layer on the bulk wafer. Depositing silicon on the sacrificial layer and the bulk wafer to form an encapsulation layer. Etching vents through the encapsulation layer to the sacrificial layer and removing the sacrificial layer. Closing the vents with a silicon deposition and arranging a strain gauge or a capacitance contact on the encapsulation layer. A pressure sensing device including a substrate, an encapsulation layer with vents, and voids between the substrate and the encapsulation layer. A portion of the encapsulation layer above the voids forms a membrane and deposited silicon plugs fill the vents. A strain gauge or a top capacitive contact arranged on the membrane.

    Episeal pressure sensor and method for making an episeal pressure sensor
    68.
    发明申请
    Episeal pressure sensor and method for making an episeal pressure sensor 有权
    Episeal压力传感器和制造episeal压力传感器的方法

    公开(公告)号:US20050142688A1

    公开(公告)日:2005-06-30

    申请号:US11064658

    申请日:2005-02-23

    Abstract: A method for making a pressure sensor by providing a wafer including a base silicon layer, a buried sacrificial layer, and a top silicon layer. The top silicon layer is arranged over the buried sacrificial layer and the buried sacrificial layer is arranged over the base silicon layer. Etching vents through the top silicon layer to the buried sacrificial layer and removing a portion of the buried sacrificial layer. Depositing silicon to seal the vents and arranging a strain gauge or a capacitance contact on the wafer. A method for making a pressure sensor including providing a bulk wafer and depositing a sacrificial layer on the bulk wafer. Depositing silicon on the sacrificial layer and the bulk wafer to form an encapsulation layer. Etching vents through the encapsulation layer to the sacrificial layer and removing the sacrificial layer. Closing the vents with a silicon deposition and arranging a strain gauge or a capacitance contact on the encapsulation layer. A pressure sensing device including a substrate, an encapsulation layer with vents, and voids between the substrate and the encapsulation layer. A portion of the encapsulation layer above the voids forms a membrane and deposited silicon plugs fill the vents. A strain gauge or a top capacitive contact arranged on the membrane.

    Abstract translation: 一种通过提供包括基底硅层,掩埋牺牲层和顶部硅层的晶片来制造压力传感器的方法。 顶层硅层布置在掩埋牺牲层上方,掩埋牺牲层布置在基底硅层上。 蚀刻通孔通过顶部硅层到掩埋牺牲层并去除一部分掩埋牺牲层。 沉积硅以密封通风口并在晶片上布置应变计或电容接触。 一种用于制造压力传感器的方法,包括提供体晶片并在体晶片上沉积牺牲层。 在牺牲层和体晶片上沉积硅以形成封装层。 蚀刻通过封装层到达牺牲层并去除牺牲层。 用硅沉积封闭通风口,并在封装层上布置应变计或电容接触。 一种压力感测装置,包括基底,通气孔的封装层以及基底和封装层之间的空隙。 空隙之上的封装层的一部分形成膜并且沉积的硅塞填充通风口。 布置在膜上的应变计或顶部电容接触。

    Method of forming semiconductor devices through epitaxy
    69.
    发明申请
    Method of forming semiconductor devices through epitaxy 有权
    通过外延形成半导体器件的方法

    公开(公告)号:US20040121564A1

    公开(公告)日:2004-06-24

    申请号:US10328922

    申请日:2002-12-23

    Applicant: Motorola Inc.

    Inventor: Bishnu Gogoi

    CPC classification number: B81B3/001 B81C2201/0109 B81C2201/0177

    Abstract: A method for creating a semiconductor structure is provided. In accordance with the method, a semiconductor substrate (101) is provided over which is disposed a sacrificial layer (103), and which has a thin single crystal semiconductor layer (105) disposed over the sacrificial layer (103). An opening (107) is then created which extends through the semiconductor layer (105) and into the sacrificial layer (103). The semiconductor layer (105) is then epitaxially grown to a suitable device thickness, thereby resulting in a device layer. The semiconductor layer is grown such that the resulting device layer extends over the opening (107), and such that the surface of the portion of the device layer extending over the opening is single crystal silicon.

    Abstract translation: 提供了一种用于制造半导体结构的方法。 根据该方法,提供半导体衬底(101),在其上设置有牺牲层(103),并且具有设置在牺牲层(103)上方的薄单晶半导体层(105)。 然后产生延伸穿过半导体层(105)并进入牺牲层(103)的开口(107)。 然后将半导体层(105)外延生长至合适的器件厚度,由此产生器件层。 生长半导体层使得所得到的器件层在开口(107)上延伸,并且使得在开口上延伸的器件层的部分的表面是单晶硅。

Patent Agency Ranking