Abstract:
Providing a method for manufacturing a thermal bimorph diaphragm and a MEMS speaker with thermal bimorphs, wherein the method comprises the steps of: thermally oxidizing a substrate (1) to obtain an insulating layer (2) thereon and providing a metal layer (3) on the insulating layer (2); providing a sacrificial layer (4) on the metal layer (3); providing a first thermal bimorph layer (5) on the sacrificial layer (4); providing a second thermal bimorph layer (6) on the first thermal bimorph layer (5); providing a metal connecting layer (7) at the positions on the metal layer (3) where the sacrificial layer (4) is not provided; forming corresponding back holes (16) on the substrate (1) and the insulating layer (2) and releasing the sacrificial layer (4); forming a warped thermal bimorph diaphragm with the first thermal bimorph layer (5) and the second thermal bimorph layer (6) after the sacrificial layer (4) is released. With the MEMS speaker with thermal bimorphs, the problems of high production cost, complicated wafer process and limitations on sound performance improvements are solved.
Abstract:
A process for forming graphene, including : depositing at least two metals onto a surface of silicon carbide (SiC), the at least two metals including at least one first metal and at least one second metal; and heating the SiC and the first and second metals under conditions that cause the at least one first metal to react with silicon of the silicon carbide to form carbon and at least one stable silicide, and the corresponding solubilities of the carbon in the at least one stable silicide and in the at least one second metal are sufficiently low that the carbon produced by the silicide reaction forms a graphene layer on the SiC.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
Abstract:
Molded structures, methods of and apparatus for producing the molded structures are provided. At least a portion of the surface features for the molds are formed from multilayer electrochemically fabricated structures (e.g. fabricated by the EFAB formation process), and typically contain features having resolutions within the 1 to 100 µm range. The layered structure is combined with other mold components, as necessary, and a molding material is injected into the mold and iohardened. The layered structure is removed (e.g. by etching) along with any other mold components to yield the molded article. In some embodiments portions of the layered structure remain in the molded article and in other embodiments an additional molding material is added after a partial or complete removal of the layered structure.
Abstract:
Various embodiments of the invention present techniques for forming structures (e.g. HARMS-type structures) via an electrochemical extrusion (ELEX TM ) process. Preferred embodiments perform the extrusion processes via depositions through anodeless conformable contact masks that are initially pressed against substrates that are then progressively pulled away or separated as the depositions thicken. A pattern of deposition may vary over the course of deposition by including more complex relative motion between the mask and the substrate elements. Such complex motion may include rotational components or translational motions having components that are not parallel to an axis of separation. More complex structures may be formed by combining the ELEX TM process with the selective deposition, blanket deposition, planarization, etching, and multi-layer operations of EFAB TM .
Abstract:
A process for forming graphene, includes: depositing at least a first and a second metal onto a surface of silicon carbide (SiC), and heating the SiC and the first and second metals under conditions that cause the first metal to react with silicon of the silicon carbide to form carbon and at least one stable silicide. The corresponding solubilities of the carbon in the stable silicide and in the second metal are sufficiently low that the carbon produced by the silicide reaction forms a graphene layer on the SiC.
Abstract:
A process for forming graphene, including : depositing at least two metals onto a surface of silicon carbide (SiC), the at least two metals including at least one first metal and at least one second metal; and heating the SiC and the first and second metals under conditions that cause the at least one first metal to react with silicon of the silicon carbide to form carbon and at least one stable silicide, and the corresponding solubilities of the carbon in the at least one stable silicide and in the at least one second metal are sufficiently low that the carbon produced by the silicide reaction forms a graphene layer on the SiC.
Abstract:
A device with multiple encapsulated functional layers, includes a substrate, a first functional layer positioned above a top surface of the substrate, the functional layer including a first device portion, a first encapsulating layer encapsulating the first functional layer, a second functional layer positioned above the first encapsulating layer, the second functional layer including a second device portion, and a second encapsulating layer encapsulating the second functional layer.
Abstract:
Electrografting method for forming and regulating a strongly adherent nanostructured polymer coating onto an electro-conductive surface profile characterized in that the surface profile is regulated by electrodeposition of nanometre- and/or micrometre-scale nuclei onto the surface profile prior to or simultaneously to the formation of the polymer coating.
Abstract:
The invention relates to a method (1) for producing a silicon-metal composite micromechanical part, combining DRIE-type and LIGA-type processes. The invention also relates to a micromechanical part (51) comprising a layer containing a silicon part (53) and a metal part (41) in such a way as to form a composite-type micromechanical part (51). The invention can be used in the field of timekeeping movements.