Abstract:
The present invention comprises nano obelisks and nanostructures and methods and processes for same. The nano obelisks of the present invention are advantageous structures for use as electron source emitters. For example, the ultra sharp obelisks can be used as an emitter source to generate highly coherent and high energy electrons with high current.
Abstract:
A field emission device for use as a backlight of a liquid crystal display comprises a conductive anode having a light-emitting layer and a cathode separated from the anode by a spacer. The cathode comprises nanofiber electron emitters. For example, the nanofiber electron emitters comprise a substrate, a conductive film adhered to the substrate and a plurality of isolated, hemispheroidal nanofiber clusters that are capable of emitting electrons at high current density and low field strength.
Abstract:
A field emission device for use as a backlight of a liquid crystal display comprises a conductive anode having a light-emitting layer and a cathode separated from the anode by a spacer. The cathode comprises nanofiber electron emitters. For example, the nanofiber electron emitters comprise a substrate, a conductive film adhered to the substrate and a plurality of isolated, hemispheroidal nanofiber clusters that are capable of emitting electrons at high current density and low field strength.
Abstract:
A flat panel display and a method for forming a flat panel display. In one embodiment, the flat panel display includes a cathodic structure which is formed within an active area on a backplate (100). The cathodic structure includes a emitter electrode metal (102) composed of strips of aluminum overlain by a layer of cladding material.
Abstract:
The present invention pertains to the field of vacuum electronics and more precisely relates to a field emitter intended for use as an electron source (cathode) in vacuum electronic devices for various purposes such as cathodic luminescent light sources, light-emitting indicators and flat displays for the optical representation of information. The field emitter of the present invention consists in a carbon film whose main portion is made of graphite clusters having their basic crystallographic planes preferably oriented so as to be perpendicular to the plane of the substrate on which said film is located. This emitter exhibits improved emission parameters that enable its use for the above-mentioned purposes. The method for producing this emitter comprises previously applying diamond crystallites on an electro-conductive substrate and depositing graphite clusters on said crystallites in order to obtain a monolithic film. The parameters of the deposition process are selected so that the crystallographic basic planes in the graphite clusters are preferably oriented in a direction perpendicular to the surface of the substrate. These parameters are also selected in order to provide for a modification in the electronic configuration of the carbon atoms in the thin boundary layer so as to reduce the work function of the electrons.
Abstract:
Patterned ion-bombarded graphite electron emitters are disclosed as well as processes for producing them. The electron emitters are produced by forming a layer of composite of graphite particles and glass on a substrate then bombarding the composite with an ion beam. The electron emitters are useful in field emitter cathode assemblies which are fabricated into flat panel displays.
Abstract:
Electron-emissive elements in area electron emitters suitable for flat-panel displays are fabricated at high packing density. The electron-emissive elements have various shapes such as filaments (30A, 30B, or 30/88D1), cones (1181 or 142D), and cone-topped pedestals (92/1021). A typical emitter contains a substrate (20) that provides structural support. A patterned lower non-insulating region (22) formed with parallel lines is provided over insulating material of the substrate. Electron-emissive filaments (30A, 30B, or 30/88D1) are formed in pores (281) extending through an insulating layer (24) furnished over the lower non-insulating region. A patterned non-insulating gate layer (34B, 40B, or 46B) is typically provided over the insulating layer to form a gated device. Charged-particle tracks (261 or 50A1/50B1) are preferably employed to define locations for electron-emissive features. Usage of charged-particle tracks enables the electron-emissive features to be quite small and spaced closely together.
Abstract:
A method of fabricating a composite field emission source is provided. A first stage of film-forming process is performed by using RF magnetron sputtering, so as to form a nano structure film on a substrate, in which the nano structure film is a petal-shaped structure composed of a plurality of nano graphite walls. Afterward, a second stage of film-forming process is performed for increasing carbon accumulation amount on the nano structure film and thereby growing a plurality of nano coral-shaped structures on the petal-shaped structure. Therefore, the composite field emission source with high strength and nano coral-shaped structures can be obtained, whereby improving the effect and life of electric field emission.
Abstract:
A method of fabricating a composite field emission source is provided. A first stage of film-forming process is performed by using RF magnetron sputtering, so as to form a nano structure film on a substrate, in which the nano structure film is a petal-like structure composed of a plurality of nano graphite walls. Afterward, a second stage of film-forming process is performed for increasing carbon accumulation amount on the nano structure film and thereby growing a plurality of nano coral-like structures on the petal-like structure. Therefore, the composite field emission source with high strength and nano coral-like structures can be obtained, whereby improving the effect and life of electric field emission.
Abstract:
Improved methods and structures are provided for an array of vertical geometries which may be used as emitter tips, as a self aligned gate structure surrounding field emitter tips, or as part of a flat panel display. The present invention offers controlled size in emitter tip formation under a more streamlined process. The present invention further provides a more efficient method to control the gate to emitter tip proximity in field emission devices. The novel method of the present invention includes implanting a dopant in a patterned manner into the silicon substrate and anodizing the silicon substrate in a controlled manner causing a more heavily doped region in the silicon substrate to form a porous silicon region.