Abstract:
An alkali metal generating agent (1) for use in forming a photoelectric surface emitting a photoelectron corresponding to an incident light or a secondary electron emission surface emitting a secondary electron corresponding to an incident electron, which comprises an oxidizing agent comprising at least one tungstate having an alkali metal ion as a counter cation and a reducing agent for reducing the above cation. The above metal generating agent (1), which includes a tungstate having weaker oxidizing power than that of a chromate, undergoes slower oxidation-reduction reaction, which results in easier reaction rate control as compared to a conventional technique using a chromate, leading to the generation of an alkali metal with good stability.
Abstract:
A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
Abstract:
This invention discloses a thin-film-coated photocathode, including a photocathode formed of first material consisting of potassium cesium antimonide and a thin-film coating of a second material consisting of cesium bromide (CsBr).
Abstract:
A photocathode structure, which can include an alkali halide, has a protective film on an exterior surface of the photocathode structure. The protective film includes ruthenium. This protective film can be, for example, ruthenium or an alloy of ruthenium and platinum. The protective film can have a thickness from 1 nm to 20 nm. The photocathode structure can be used in an electron beam tool like a scanning electron microscope.
Abstract:
The present invention relates to an alkali metal generating agent and others for formation of a photo-cathode or a secondary-electron emitting surface capable of stably generating an alkali metal. The alkali metal generating agent is used in formation of a photo-cathode for emitting a photoelectron corresponding to incident light, or in formation of a secondary-electron emitting surface for emitting secondary electrons corresponding to an incident electron. Particularly, the alkali metal generating agent contains at least an oxidizer comprising at least one molybdate with an alkali metal ion as a counter cation, and a reducer for reducing the ion. An alkali metal generating device comprises at least the alkali metal generating agent and a case housing it, and the case is provided with a discharge port for discharging the vapor of the alkali metal.
Abstract:
A photomultiplier is constituted by a photocathode and an electron multiplier having a typical structure in which a dynode unit having a plurality of dynode plates stacked in an incident direction of photoelectrons, an anode plate, and an inverting dynode plate are sequentially stacked. Through holes for injecting a metal vapor are formed in the inverting dynode plate to form secondary electron emitting layers on the surfaces of dynodes supported by the dynode plates, and the photocathode. With this structure, the secondary electron emitting layers are uniformly formed on the surfaces of the dynodes. Therefore, variations in output signals obtained from anodes can be reduced regardless of the positions of the photocathode.
Abstract:
A photomultiplier includes a photocathode and an electron multiplier. A typical structure of the electron multiplier is obtained such that a dynode unit constituted by stacking a plurality of dynode plates in the incident direction of photoelectrons, an anode plate, and an inverting dynode plate are stacked. The anode plate has electron through holes at a predetermined portion to cause secondary electrons emitted from the dynode unit to pass therethrough. Each electron through hole has a diameter on the inverting dynode plate side larger than that on the dynode unit side, thereby increasing the capture area of the secondary electrons orbit-inverted by the inverting dynode plate.
Abstract:
The photocathode according to this invention is characterized in that an aluminium thin film is formed on a substrate, and then an antimony thin layer is deposited directly on the aluminium thin film and is activated by an alkali metal. It is especially preferable that the antimony thin layer is deposited in a thickness of 15 .mu.g/cm.sup.2 to 45 .mu.g/cm.sup.2 and is activated by an alkali metal. Such reflection-type photocathode is applicable to photomultipliers. Among functions which are considered to be done by the Al film. which is in direct contact with the Sb layer, a first one is to prevent the alloying between the Sb layer and the substrate (e.g., Ni), and a second one is to augment a reflectance of light to be detected.
Abstract translation:根据本发明的光电阴极的特征在于在基板上形成铝薄膜,然后将锑薄层直接沉积在铝薄膜上并被碱金属活化。 特别优选的是,锑薄层以15g / cm 2至45g / cm 2的厚度沉积,并被碱金属活化。 这种反射型光电阴极适用于光电倍增管。 被认为是由Al电影完成的功能。 其与Sb层直接接触,第一种是防止Sb层和衬底(例如Ni)之间的合金化,第二种是增加要检测的光的反射率。
Abstract:
A photomultiplier has a focusing electrode plate for supporting focusing electrodes, provided between a photocathode and a dynode unit. Since the focusing electrode plate has holding springs which are integrally formed with the focusing electrode plate, resistance-welding becomes unnecessary to prevent field discharge. A concave portion is formed in a main surface of the focusing electrode plate to arrange an insulating member sandwiched between the focusing electrode plate and the photoelectron incidence side of the dynode unit and partially in contact with the concave portion. With this structure, discharge between the focusing electrode plate and the dynode unit can be prevented.
Abstract:
A photomultiplier which can be easily made compact has a dynode unit having a plurality of dynode plates stacked in an electron incident direction in a vacuum container fabricated by a housing and a base member integrally formed with the housing. Each dynode plate is constituted by welding at least two plates overlapping each other. The welding positions do not overlap each other in the stacking direction of the dynode plates. With this structure, field discharge at the welding portions between the dynode plates can be prevented to reduce noise.