Abstract:
A flexible printed circuit (FPC) and electronic component assembly. The FPC comprises a first protective layer having a first opening, a main layer on the first protective layer, and a second protective layer having a second opening exposing the main layer. The heat produced from the electronic component can be transmitted to the main layer by a heat-conductive medium between the electronic component and the main layer, and can be diffused via the first opening.
Abstract:
A semiconductor device is provided that includes a semiconductor chip, a plurality of solder bumps that electrically couple the semiconductor chip to the outside, and a metal bump being provided on the surface of each first solder bump which is at least a part of the plurality of solder bumps and being made of a metal having a melting point higher than that of the first solder bump. The wettability of the first solder bump is improved as each metal bump serves as a core when the corresponding first solder bump melts. Thus, the connection reliability of the first solder bump can be improved.
Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
A method to replace an electrical interface on a printed circuit board having a plurality of contact pads on a top surface, the contact pads being connected to conducting material extending through said circuit board. For the contact pad being replaced, drilling a hole through said printed circuit board at that location, and removing any remaining conductor material attached to the contact pad on the top board surface. Providing a replacement conductor/contact pad structure having a generally T-configuration with a stem and a head that completely surrounds the stem, wherein said head has a diameter greater than the diameter of the drilled hole. Inserting the replacement conductor/contact pad into the hole with said stem extending beyond the second surface of the board with the bottom surface of the head being in contact with the first surface of said board. A replacement conductor/contact pad on repaired board is also described.
Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
An electrically conducting bonding connection (B) is produced between an electronic circuit (S) arranged on an electrically conducting support plate (1) and the support plate (1) by providing a hole (4, 5), into which an electrically conducting bonding element (2) with a bondable surface (3) is pressed in such a way that the support plate (1) and the bonding element (2) enter into an electrically conducting and frictional connection; the bonding connection is subsequently produced with the bonding element (2).
Abstract:
A bumping process, a bump structure, a packaging process and a package structure are described. The bump structure comprises a first solder portion, a second solder portion and a conductive layer. The second solder portion is disposed on the first solder portion and the conductive layer is disposed between the first solder portion and the second solder portion. The bumping process produces a bump structure having a greater height. The bumping process can also be applied in a package process to form a package structure having a highly reliable connection between a chip and a packaging substrate.
Abstract:
A process for manufacturing a wiring board comprising a substrate made of an insulation material and having first and second surfaces, first and second conductor patterns formed on the first and second surfaces, respectively, and a via conductor penetrating the substrate to electrically connect the first conductor pattern with the second conductor pattern; the process comprising the following steps of: forming the substrate with a through-hole penetrating thereto and defining openings at the first and second surfaces, respectively; plating the substrate with a metal so that a metal layer having a predetermined thickness is formed on the respective first and second surfaces of the substrate and the through-hole is substantially filled with the metal to be the via conductor; irradiating a laser beam, as a plurality of spots, around a metal-less portion of the plated metal, such as a dimple or seam, at positions corresponding to the openings of the through-hole, so that the a part of the plated metal melts to fill the metal-less portion with the molten metal.
Abstract:
Within a method for forming a solder interconnection structure for use within a microelectronic fabrication, there is first provided a substrate having formed thereover a bond pad. There is then formed upon the bond pad a first solder interconnection layer. There is then formed over the first solder interconnection layer an annular solder non-wettable copper oxide layer which does not cover an upper dome portion of the first solder interconnection layer. There is then formed over the upper dome portion of the first solder interconnection layer and not upon the annular solder non-wettable copper oxide layer a second solder interconnection layer.