Abstract:
PURPOSE: A method for controlling a band gap of a semiconductor optical device having the structure of a quantum well is provided to prevent a quantum well substrate damaging by using a silicon nitride film as a dielectric cover layer and by controlling a flow ratio of ammonia gas. CONSTITUTION: A substrate having the structure of a quantum well is grown(S100). A dielectric cover layer is deposited on the substrate by a plasma chemical vapor deposition process(S200). A thermal processing is performed on the dielectric cover layer at a predetermined time(S300). The dielectric cover layer is removed(S400). A fluorescence spectrum is measured(S500).
Abstract:
PURPOSE: A mounting technology of a semiconductor optical device for anti-reflection coating is provided to perform the mounting technology in a stable and identical condition by preventing a sample from damaging in the anti-reflection coating. CONSTITUTION: A spacer(20), a fixing plate(30) and the second stainless(40) is deposited on the first stainless(10) in turns. A holder coupling unit(50) couples from the second stainless(40) to the first stainless(10) via each hole. A sample fixing unit(55) couples from the second stainless(40) to the fixing plate(30) via each hole. A laser bar(60) is extended at a level with the spacer(20) between the fixing plate(30) and the first stainless(10). The area size of the second stainless(40) is less than that of the first stainless(10).
Abstract:
PURPOSE: A method for measuring a sectional reflexibility of a field absorption type device is provided to measure easily an optical variable by using an optical current. CONSTITUTION: A lens type fiber(21) transfers a laser beam emitted from a variable wavelength laser(10). The laser beam passing through the lens type filter(21) is irradiated on a section of a device(15). A chopper(11) turns on or off the variable wavelength laser(10). An optical rotator(14) is formed at a position adjacent to a polarization controller(13) in order to control a path of the laser beam. An optical detector(16) is connected with the optical rotator(14) in order to measure a change of reflective intensity of a reflected beam. A lock-in amplifier(17) is connected with the chopper(11) in order to detect a modulated variable wavelength laser beam. A power supply(18) supplies power to each component. A voltage separator(18) separates a signal influence between the device(15) and the lock-in amplifier(17).
Abstract:
본발명은태양전지에관한것으로서, 찰코파이라이트형화합물을나노임프린트리소그래피공정을통해광결정구조로제조함으로써태양입사광의훕수를증폭시키므로우수한광전환효율을나타내고, 또한, Cu, In, Ga 전구체페이스트또는잉크를이용하여 CiGS 또는 CIS 박막을제조하여금속원료의소모를최소화함으로써공정비용을절감할수 있다.
Abstract:
본발명은태양전지에관한것으로서, 찰코파이라이트형화합물을나노임프린트리소그래피공정을통해광결정구조로제조함으로써태양입사광의훕수를증폭시키므로우수한광전환효율을나타내고, 또한, Cu, In, Ga 전구체페이스트또는잉크를이용하여 CiGS 또는 CIS 박막을제조하여금속원료의소모를최소화함으로써공정비용을절감할수 있다.