Abstract:
본 발명은 반도체 광증폭기를 이용한 전광 XOR 논리소자의 구현방법에 관한 것으로서, 더 상세하게는 반도체 광증폭기에 주입되는 전류와 입사되는 조사신호 및 펌프신호로 조절이 가능한 반도체 광증폭기의 인버터 특성을 이용하여 전광 XOR 논리소자를 구현할 수 있는 기술에 관한 것이다. 본 발명에 따른 XOR 논리소자의 구현방법은, 두개의 반도체 광증폭기에 펌프신호와 조사신호를 같이 입사시켜 상기 반도체 광증폭기의 이득포화와 파장변환에 의해 생기는 인버터 특성의 출력신호를 합하여 전광 XOR 논리소자의 동작특성을 얻음을 특징으로 한다. 본 발명에 의하면, 반도체 광증폭기의 인버터 특성을 이용하여 전광 XOR 논리소자를 구현하기 때문에 광섬유에 기반을 둔 소자들보다 안정적이고 다른 논리소자와의 결합이 용이하며, 클록 신호를 만들어 줄 필요가 없으므로 논리소자의 규모 및 속도 제한이 크게 줄어드는 효과가 있다.
Abstract:
PURPOSE: A method for controlling a band gap of a semiconductor optical device having the structure of a quantum well is provided to prevent a quantum well substrate damaging by using a silicon nitride film as a dielectric cover layer and by controlling a flow ratio of ammonia gas. CONSTITUTION: A substrate having the structure of a quantum well is grown(S100). A dielectric cover layer is deposited on the substrate by a plasma chemical vapor deposition process(S200). A thermal processing is performed on the dielectric cover layer at a predetermined time(S300). The dielectric cover layer is removed(S400). A fluorescence spectrum is measured(S500).
Abstract:
A method for forming an electrooptic XOR logic device using an semiconductor optical amplifier is provided to form an electrooptic XOR logic device by using a characteristic of an inverter of an semiconductor optical amplifier. Characteristics of inverters of semiconductor optical amplifiers(SOA1,SOA2) are controlled by current, incident irradiation signals, and pump signals applied to the semiconductor optical amplifiers(SOA1,SOA2). The characteristics of inverters of semiconductor optical amplifiers(SOA1,SOA2) are obtained by increasing the amount of current, inputting the irradiation signals, and changing intensity of the pump signals. In the first semiconductor optical amplifiers(SOA1), B signal becomes the pump signal and A signal becomes the irradiation signal. In the second semiconductor optical amplifiers(SOA2), A signal becomes the pump signal and B signal becomes the irradiation signal. An XOR logic device is formed by adding two output signals of the semiconductor optical amplifiers(SOA1,SOA2). In the XOR logic device, the output signal has logic 1 if any one of A signal and B signal is logic 1 and the output signal has logic 0 if A signal and B signal have the same logic level.
Abstract:
본 발명은 스스로 뭉쳐서 형성된 양자점에서 나오는 광의 스펙트럼이 매우 넓은 것을 이용하여 반도체 광 증폭기의 이득 대역폭을 확장하는 방법에 관한 것이다. 더 상세하게는 InGaAs/InGaAsP/InP 양자우물 반도체 광증폭기의 이득 대역폭 확장방법에 있어서, 소정 두께의 InP 버퍼층을 성장시키는 과정과, 상기 InP 버퍼층 성장후 소정 가스를 공급하는 제1 가스 공급 과정과, 상기 InP 버퍼층 위로 InAs 단일 우물 구조층을 성장시키는 과정과, 상기 InAs 층 성장 후 소정 가스를 공급하여 격자 상수가 맞지 않는 상기 InAs 층이 서로 뭉쳐서 양자점을 형성하도록 하는 제2 가스 공급 과정과, 상기 InAs 층 위로 소정 두께의 InP 캡층을 성장시키는 과정으로 양자점을 생성하여 반도체 광 증폭기의 이득영역으로 양자점을 도입하고, 상기 InAs가 서로 뭉치면서 각 점들의 크기와 높이가 불균일하게 서로 독립적인 점을 형성하게 함을 특징으로 한다.
Abstract:
PURPOSE: A method for locally forming a different band gap in a quantum well by a dielectric-semiconductor composite cover layer is provided to regulate a degree of disorder of the quantum well. CONSTITUTION: The method begins with growing an InGaAs/InGaAsP quantum well substrate by a chemical beam epitaxy technique. Next, a dielectric thin layer made of such as SiO2 or SiNx is formed as a cover layer on the quantum well substrate by a plasma-enhanced chemical deposition technique. After a heat treatment step is carried out at a temperature of 600 - 800°C for 4 - 16 minutes, the dielectric thin layer is removed. In addition, InP, InGaAs or InGaAsP is used as a semiconductor cover layer.
Abstract:
Computer central processing unit scans electron beam by scanning circuit by running analog/digital convertor and detects generating signal with detector(S10). Detected signal converted through analog/digital convertor after passing through an image signal amplifier and is stored at data storing device by computer central processing unit. Stored signal outputs to computer monitor and outputs to electron microscope monitor(S11) through an image signal amplifier from a detector(S10). Therefore, electron beam lithography device carries mask pattern alignment from an output alignment mark image and by using electron beam blocker(S4) blocks electron beam and controls electron microscope magnification so all electron beam lithography area are positioned within range of scanning.