Abstract:
In one embodiment, A MEMS sensor assembly includes a substrate, a first sensor supported by the substrate and including a first absorber spaced apart from the substrate, and a second sensor supported by the substrate and including (i) a second absorber spaced apart from the substrate, and (ii) at least one thermal shorting portion integrally formed with the second absorber and extending downwardly from the second absorber to the substrate thereby thermally shorting the second absorber to the substrate.
Abstract:
An electronic device and methods of manufacture thereof. One or more methods may include providing a lid wafer having a cavity and a surface surrounding the cavity and a device wafer having a detector device and a reference device. In certain examples, a solder barrier layer of titanium material may be deposited onto the surface of the lid wafer. The solder barrier layer of titanium material may further be activated to function as a getter. In various examples, the lid wafer and the device wafer may be bonded together using solder, and the solder barrier layer of titanium material may prevent the solder from contacting the surface of the lid wafer.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A wearable device is provided having multiple sensors configured to detect and measure different parameters of interest. The wearable device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The wearable device couples a first parameter to be measured directly to the direct sensor. Conversely, the wearable device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the wearable device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors to reduce form factor, cost, complexity, simplify assembly, while increasing performance.
Abstract:
A sensor chip includes a first substrate with a first surface and a second surface including at least one CMOS circuit, a first MEMS substrate with a first surface and a second surface on opposing sides of the first MEMS substrate, a second substrate, a second MEMS substrate, and a third substrate including at least one CMOS circuit. The first surface of the first substrate is attached to a packaging substrate and the second surface of the first substrate is attached to the first surface of the first MEMS substrate. The second surface of the first MEMS substrate is attached to the second substrate. The first substrate, the first MEMS substrate, the second substrate and the packaging substrate are provided with electrical inter-connects.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.
Abstract:
A cell phone is provided having multiple sensors configured to detect and measure different parameters of interest. The cell phone includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The cell phone couples a first parameter to be measured directly to the direct sensor. Conversely, the cell phone can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the cell phone by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A sensor chip combining a substrate comprising at least one CMOS circuit, a MEMS substrate and another substrate comprising at least one CMOS circuit in one package that is vertically stacked is disclosed. The package comprises a sensor chip further comprising a first substrate with a first surface and a second surface comprising at least one CMOS circuit; a MEMS substrate with a first surface and a second surface; and a second substrate comprising at least one CMOS circuit. Where the first surface of the first substrate is attached to a packaging substrate and the second surface of the first substrate is attached to the first surface of the MEMS substrate. The second surface of the MEMS substrate is attached to the second substrate. The first substrate, the MEMS substrate, the second substrate and the packaging substrate are mechanically attached and provided with electrical inter-connects.
Abstract:
A monolithically integrated multi-sensor (MIMS) is disclosed. A MIMs integrated circuit comprises a plurality of sensors. For example, the integrated circuit can comprise three or more sensors where each sensor measures a different parameter. The three or more sensors can share one or more layers to form each sensor structure. In one embodiment, the three or more sensors can comprise MEMs sensor structures. Examples of the sensors that can be formed on a MIMs integrated circuit are an inertial sensor, a pressure sensor, a tactile sensor, a humidity sensor, a temperature sensor, a microphone, a force sensor, a load sensor, a magnetic sensor, a flow sensor, a light sensor, an electric field sensor, an electrical impedance sensor, a galvanic skin response sensor, a chemical sensor, a gas sensor, a liquid sensor, a solids sensor, and a biological sensor.