Abstract:
A circuit board and an electronic device, the circuit board includes a first wiring board including a first substrate and a first wiring layer disposed on a first side surface of the first substrate, and the first wiring layer includes a first ground wiring; the circuit board further includes a first protective layer and a first electromagnetic interference shielding layer sequentially stacked on a side of the first wiring layer away from the first substrate; the first protective layer has a first opening exposing at least a portion of a first ground wiring, the first opening is filled with a first conductive material, height difference between a surface of the first conductive material and a surface of the first protective layer away from the first substrate ranges from 0 to 2 microns, and the first conductive material connects the first electromagnetic interference shielding layer to the first grounding wiring.
Abstract:
A method and circuit board arrangement for an intrinsically safe portable device includes two or more circuit boards having a frame structure that forms a contiguous boundary around a space between the circuit boards. In the space there are circuit components mounted on both circuit boards, and a connector that connect the two circuit boards. An encapsulant material fills the space bounded by the frame structure between the circuit boards to exclude airborne material from coming into contact with the encapsulated circuit components.
Abstract:
In one general aspect, an electronic device module includes a first board, a first device mounted on a first surface of the first board, a second board disposed below the first board, and a plurality of second devices disposed between the first board and the second board, wherein a surface of each second device the plurality of second devices is bonded to a second surface of the first board and another surface of each of the second devices is bonded to the second board.
Abstract:
Examples herein include modules and connections for modules to couple to a computing device. An example module includes a housing comprising an end to couple to a computing device, multiple capacitive pads that each include data contacts to enable data transfer, a power contact pad to provide or receive power, and a ground contact pad to couple to ground. The ground contact pad is larger in size than the power contact pad, and the ground contact pad is positioned closer than the power contact pad to the end of the housing configured to couple to the computing device.
Abstract:
An apparatus includes a coreless substrate with an embedded die that is integral to the coreless substrate, and at least one device assembled on a surface that is opposite to a ball-grid array disposed on the coreless substrate. The apparatus include an at least one stiffener layer that is integral to the coreless substrate and the stiffener layer is made of overmold material, underfill material, or prepreg material.
Abstract:
Disclosed are a multi-layer flexible printed circuit board and a method for manufacturing the same. The multi-layer flexible printed circuit board includes an adhesion sheet from which a pressing and heating area is cut, an upper base layer, from which the pressing and heating area is cut, on the adhesion sheet, and a lower base layer under to the adhesion sheet.
Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. The conductive patterns include a series of electrical contacts adjacent to one edge of the substrate. The substrate is bonded to two rigid frames, one on each opposite surface. Each substrate has a series of castellations on one edge that are aligned and electrically connected to the respective contacts on the substrate, preferably by soldering. The castellations can serve as a self-aligning mechanism when the module is brought into contact with a low-profile pin array, and the module may be held in place on a motherboard by guide rails in a socket that engages the edges perpendicular to the castellated edge of the module. The module may further be provided with protective heat spreading covers.
Abstract:
A circuit carrier assembly includes a plurality of substrates directly secured together by an electrically conductive securing substance. In one example, the securing substance is a conductive epoxy. In another example, the electrically conductive securing substance is solder. Still another example includes a combination of solder and conductive epoxy. A non-conductive epoxy provides further mechanical connection and thermal conductivity between the substrates while also electrically isolating selected portions of the substrates in one example. The electrically conductive securing substance not only mechanically secures the substrates together and provides thermal conductivity between the substrates, which increases the thermal capacitance of the assembly, but also establishes at least one electrically conductive path between the substrates.
Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. A part of the substrate is flexible and bifurcated. Two rigid members are attached lengthwise, one on either side of the substrate, and the free ends of the bifurcation are reflexed respectively about these members and bonded to them. Electrodes are located on the bifurcations so that they will be exposed outwardly and/or downwardly after reflexing. The module may further be provided with protective heat spreading covers. The electrodes and rigid members may be configured to engage a mating socket or they may be solderable to a printed circuit board.
Abstract:
A semiconductor chip module includes a first flip-chip unit and a second flip-chip unit. The first flip-chip unit has a first chip and a first glass circuit board. The first chip is connected with the first glass circuit board by flip-chip bonding. The second flip-chip unit has a second chip and a second glass circuit board. The second chip is connected with the second glass circuit board by flip-chip bonding. The first flip-chip unit and the second flip-chip unit are attached to each other. A method for manufacturing the semiconductor chip module is also disclosed.