Abstract:
An apparatus is configured with a component having a coating comprising a material in a first phase (e.g., solid and/or liquid phase) with a transition temperature. The component is mechanically and/or electrically attached to a substrate. Exposure of the coating to a temperature that meets or exceeds the transition temperature causes the material to undergo a phase change. The phase change of the material alters the position of the component, including separation of the component from the substrate. The separation disrupts the attachment, thereby mitigating damage to the substrate and/or component.
Abstract:
A multilayered circuit board having a metal-free region vertically extending through at least a portion of a conductive layer, which lies generally parallel to a horizontal plane, vertically spaced from an outer surface. Heat-emitting and heat-sensitive components are mounted on the outer surface. The heat-emitting component is vertically and laterally spaced from the metal-free region, whereas the heat-sensitive component is vertically spaced and laterally aligned within the metal-free region such that the metal-free region is a thermal barrier that shields heat-sensitive component from radial heat flowing from the heat-emitting component.
Abstract:
An image sensor module is provided. The image sensor module includes a circuit board, a flat material, an image sensing chip, a holder and a covering plate. The flat material disposed on an assembling surface of the circuit board has a supporting surface and a bottom surface opposite thereto. The image sensing chip with its base surface facing to the supporting surface is configured on the supporting surface. The holder is disposed on the flat material, and the bottom plane of the holder faces to the supporting surface. The supporting surface is used to make the base surface parallel to the bottom plane. The covering plate is arranged on the holder to seal the image sensing chip.
Abstract:
In order to secure wired components of large mass or non-uniform mass distribution safely on a circuit board, without the components needing, as currently usual, to be glued onto the circuit board or held on the circuit board with snap-in holders, integrated into a connection bore for receiving a connection wire, or pin, of an electronic component a holding mechanism for secured holding of the connection wire, or pin. The holding mechanism represents a narrowing in the connection bore to a diameter smaller than that of the connection wire, or pin. The holding mechanism can be implemented, for example, by a connection bore embodied in the form of a bore drilled from one side of the circuit board, not completely through the circuit board. In such case, edge remains as a narrowing, which securely seizes the connection pin of the relevant component and holds the component fixed to the circuit board.
Abstract:
A printed board assembly includes a printed board, an electrical component, a first interconnect that electrically connects the component to the printed board, and a second interconnect that electrically connects the first interconnect to the printed board. In some examples, the second interconnect extends between the first interconnect and the same electrical contact on the printed board to which the first interconnect is electrically connected. The first and second interconnects provide an at least partially redundant electrical pathway between the component and the printed board.
Abstract:
An illumination device comprising a connection carrier (1), at least one light-emitting diode (10), an electrically insulating layer (3) and a fixing device (4) is specified. The connection carrier (1) has a first main area (1a) and a second main area (1b) remote from the first main area. The light-emitting diode (10) is fixed on the first main area (1a) of the connection carrier (1). The electrically insulating layer (3) is fitted to the second main area (1b) of the connection carrier (1) and projects laterally beyond the second main area (1b) of the connection carrier (1). The fixing device (4) is suitable for fixing the illumination device to a mounting area (2a) of a carrier (2), wherein the electrically insulating layer (3) is arranged between the second main area (1b) of the connection carrier (1) and the mounting area (2a) of the carrier (2). Furthermore, the fixing device (4) presses the connection carrier (1) against the mounting area (2a). The pressure exerted in this way is used to effect a fixing of the insulating layer (3) between the second main area (1b) of the connection carrier (1) and the mounting area (2a). The fixing device (4) is connected to an optical element (8), which optically influences the light generated by the light-emitting diode (10) during operation.
Abstract:
Electronic device has substrate having at least one pad, electronic component having bump connected with pad of substrate electrically and mounting on substrate by flip chip bonding, conductive resin electrically connecting pad with bump, and insulation sheet disposed between substrate and electronic component. Substrate has recess on surface opposite to electronic component. Pad is formed on recess bottom. Conductive resin is provided on pad and in recess. Sheet has through hole corresponding to each bump. Opening area of through hole is smaller than that of recess. Bump is inserted into through hole, in contact with inner wall of through hole, electrically connected with pad via conductive resin, without direct contact with pad.
Abstract:
An electrical power substrate comprises a metallic body at least one surface of the body having a coating generated by plasma electrolytic oxidation (PEO). The coating includes a dense hard layer adjacent the said surface of the metallic body, and a porous outer layer. Electrically conductive elements are attached to the said coating.
Abstract:
A printed circuit board having a plurality of press-fit sockets for accommodating press-fit pins, which are insertable from the direction of a broadside of the printed circuit board with press-fit into through holes of the press-fit sockets. The method includes applying, on a section of the broadside of the printed circuit board, of an insulating protective layer, which has passage holes for the press-fit pins situated above the through holes of the press-fit sockets.
Abstract:
Information regarding electrical components and their use is provided with a foldable information sheet having instructions thereon. The sheet has apertures which fit over the electrical components and information is printed on the sheet in proximity to the electrical component or components to which it applies. A portion of the information sheet may be adhered to a planar surface on which the components are mounted and non-adhered portions of the information sheet may be folded over the components.