Abstract:
A circuit substrate laminate, comprising a conductive metal layer; and a dielectric composite material having a dielectric constant of less than about 3.5 and a dissipation factor of less than about 0.006, wherein the dielectric composite material comprises: a polymer resin; and about 10 to about 70 volume percent of cenospheres having a ferric oxide content of less than or equal to 3 weight percent.
Abstract:
A circuit subassembly, comprising: a conductive layer, a dielectric layer formed from a thermosetting composition, wherein the thermosetting composition comprises, based on the total weight of the thermosetting composition a polybutadiene or polyisoprene resin, about 30 to about 70 percent by weight of a magnesium hydroxide having less than about 1000 ppm of ionic contaminants, and about 5 to about 15 percent by weight of a nitrogen-containing compound, wherein the nitrogen-containing compound comprises at least about 15 weight percent of nitrogen; and an adhesive layer disposed between and in intimate contact with the conductive layer and the dielectric layer, wherein the adhesive comprises a poly(arylene ether), wherein the circuit subassembly has a UL-94 rating of at least V-1.
Abstract:
A circuit subassembly, comprising a dielectric layer formed from a dielectric composition comprising, based on the total volume of the composition: about (15) to about (65) volume percent of a dielectric filler; and about (35) to about (85) volume percent of a thermosetting composition comprising: a poly(arylene ether), and a carboxy-functionalized polybutadiene or polyisoprene polymer.
Abstract:
A circuit subassembly, comprising a dielectric layer formed from a dielectric composition comprising, based on the total volume of the composition: about (15) to about (65) volume percent of a dielectric filler; and about (35) to about (85) volume percent of a thermosetting composition comprising: a poly(arylene ether), and a carboxy-functionalized polybutadiene or polyisoprene polymer.
Abstract:
Use of a roughened dielectric layer between a dielectric substrate and a conductive layer, which allows increased adhesion between layers without the conductor loss associated with roughened conductor layers, as well as improved accuracy in etching. The method is widely applicable to a variety of dielectric substrate and conductive layer constructions, and can be readily tuned to provide the desired level of adhesion and other advantageous properties.
Abstract:
A circuit subassembly, comprising: a conductive layer, a dielectric layer formed from a thermosetting composition, wherein the thermosetting composition comprises, based on the total weight of the thermosetting composition a polybutadiene or polyisoprene resin, about 30 to about 70 percent by weight of a magnesium hydroxide having less than about 1000 ppm of ionic contaminants, and about 5 to about 15 percent by weight of a nitrogen-containing compound, wherein the nitrogen-containing compound comprises at least about 15 weight percent of nitrogen; and an adhesive layer disposed between and in intimate contact with the conductive layer and the dielectric layer, wherein the adhesive comprises a poly(arylene ether), wherein the circuit subassembly has a UL-94 rating of at least V-1.
Abstract:
Use of a roughened dielectric layer between a dielectric substrate and a conductive layer, which allows increased adhesion between layers without the conductor loss associated with roughened conductor layers, as well as improved accuracy in etching. The method is widely applicable to a variety of dielectric substrate and conductive layer constructions, and can be readily tuned to provide the desired level of adhesion and other advantageous properties.