Abstract:
PROBLEM TO BE SOLVED: To provide a hinge used with a dual axis micromirror such as an MEMS array and a parallel plate electrostatic operation, that allows for a compliant torsional rotation while simultaneously restricting net vertical and horizontal displacement. SOLUTION: A circular mirror (12) is connected to a gimbal (44) at opposing, but at locations (36) and (37) deviated from the center axis with compound longitudinal hinges (40) and (42). COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.
Abstract:
One or more cavities are formed in the bonding surfaces of one, all, or s ome of the elements to be bonded. These cavities serve as receptacles for th e bonding material and are where the bonds are localized. The cavities are o f sufficient size and shape so that their volume is greater than the volume of bonding material forming the bond. This ensures that when the elements ar e brought into contact with one another to mate, the bonding material, which can flow prior to solidifying into a bond, will flow into the cavities and will not impede the separation of the parts. This allows the parts to be mat ed with nominally zero separation. Once solidified, the bonding material for ms a localized bond inside each cavity. Different cavity shapes, such as, re ctangular, circular, or any other shape that can be injected or filled with adhesive material may be used.
Abstract:
Apparatus and methods are provided for driving a two-axis ~X-Y~ MEMS mirror using three (1, 2, 3) non-contact actuation elements or electrodes. A differential bi-directional mirror control uses unipolar drive voltages biased at a suitable value. Transformation functions map two-axis tip tilt commands to three actuation drive signals for selected electrode orientations and sizes.
Abstract:
Methods and apparatus are provided for detection and control of multiple-axis active alignment for a free-space-coupled single-mode fiber-optic transmission system that automatically optimizes the coupling through the system. In a specific embodiment, a measurement of coupled power is made and error signals are used to control actuation via four axes of beam steering elements to null four generally orthogonal alignment errors (combinations of two lateral errors and two angular errors) of the beam between the input and output fibers. The four alignment errors are detected using a synchronous-detection approach. A feedback control system nulls the four errors.
Abstract:
Physical Layer and Data-Link Layer data are connected with Networking through Application Layer data/information to enable searching, sorting, and identification of novel relationships between signal sources and their contents. Metadata can be used at the Physical Layer in an optical fiber network, connecting with metadata generated at the Data Link Layer, connected to metadata generated at the Network to Application Layer. The Physical Layer metadata is obtained from configuration and provisioning data within an Intelligent Optical System. The Data-Link Layer metadata is obtained from a signal processing device. The Network through Application Metadata is obtained from a packet capture or flow capture probe. The metadata from all layers are linked in a data store such that the network traffic, passing through stream(s) in optical fiber(s) layer data are combined. The effect of that combination enables security, intelligence, surveillance, or network analysts to separate application and network information by original source.
Abstract:
An array apparatus has a micromachined SOI structure, such as a MEMS array, mounted directly on a class of insulative substrate, such as low temperature co-fired ceramic or a thermal-coefficient of expansion matched glass, in which is embedded electrostatic electrodes disposed in alignment with the individual MEMS elements, where the electrostatic electrodes are configured for substantial fanout. In a specific embodiment in order to compensate for differences in thermal-expansion characteristics between SOI and ceramic, a flexible mounting is effected by means of posts, bridges and/or mechanical elements which allow uneven expansion in x and y while maintaining z-axis stability. Methods according to the invention include fabrication steps wherein electrodes are fabricated to a post-fired ceramic substrate and coupled via traces through the ceramic substrate to driver modules.
Abstract:
A system for controlling a purely photonic network comprising: at least one digital computing device configured for: storing instructions which, when executed by one or more processors, cause the instructions to control a photonic network, the photonic network comprising purely photonic elements that require no electrical-to-optical or optical-to-electrical conversion between a network input port and a network output port, wherein the digital computing device stores: 1) relationship information that describes the relationships between a plurality of network elements in the photonic network; and 2) configuration information that describes the current state of each of the plurality of network elements; receiving a path generation request that includes a first port identifier and a second port identifier, wherein the first port identifier represents an input port and the second port identifier represents a first output port; based at least in part on the relationship information and the configuration information, generating candidate paths that begin at the input port and end at at least the first output port.
Abstract:
In a folded three-dimensional free-space optical switch including a set of fibers and an optical system for producing collimated beamlets aligned to intersect an array of dual axis micromirrors of coplanar input and output mirror elements, and a folding mirror, the input and output micromirrors are arranged in a pattern wherein either the input or output mirror set is disposed along an annulus and wherein the complementary output or input mirror set is disposed within the annulus in order to globally minimize maximum tilt angles for a two-dimensional locus of tilt angles of the micromirror set. The beamlets are routed from assigned input fibers to corresponding input moveable mirrors to assigned output fibers via the static folding mirror and corresponding output moveable mirrors.
Abstract:
In a folded three-dimensional free-space optical switch including a set of fibers and an optical system for producing collimated beamlets aligned to intersect an array of dual axis micromirrors of coplanar input and output mirror elements, and a folding mirror, the input and output micromirrors are arranged in a pattern wherein either the input or output mirror set is disposed along an annulus and wherein the complementary output or input mirror set is disposed within the annulus in order to globally minimize maximum tilt angles for a two-dimensional locus of tilt angles of the micromirror set. The beamlets are routed from assigned input fibers to corresponding input moveable mirrors to assigned output fibers via the static folding mirror and corresponding output moveable mirrors.