Abstract:
A method of forming silicon nitride at low temperature, charge trap memory device comprising crystalline nano dots formed using the same and method of manufacturing charge trap memory device are provided to prevent the increment of the leakage current even though the thickness of the nitride film is thin. The substrate is loaded in the chamber of the silicon nitride deposition apparatus(100). The silicon nitride deposition apparatus includes a filament. The temperature of filament is increased to the dissociation temperature of the reaction gas(110). The reaction gas for the silicon nitride formation is supplied to the chamber(120). Therefore, the crystalline silicon nitride is formed in the top of the substrate. At this time, the temperature of filament is maintained by 1400°C-2000°C. The pressure of the chamber maintains in the number torr~ several tens torr.
Abstract:
상기 박막 제조 방법에 있어서, 챔버 내에 기판을 제공한다. 챔버 내에 제1 반응 가스 및 제2 반응 가스를 공급한다. 그리고, 제1 반응 가스를 해리하여 결정성 나노 입자를 형성한다. 제2 반응 가스를 이용하여 기판 상에 비결정성 물질의 형성을 억제한다. 그리고, 기판 상에 제공된 결정성 나노 입자로부터 결정성 박막을 형성한다.
Abstract:
A method for production of thin layer and an apparatus for manufacturing the same are provided to perform the manufacturing process at the lower temperature by dissociating the reaction gas. A substrate is provided inside the chamber(S510). The first reaction gas and the second reaction gas are supplied inside the chamber(S520). The first reaction gas is dissociated and the crystalline nano particle is formed(S530). The formation of the non-crystalline substance is suppressed on the top of the substrate by using the second reaction gas(S540). The crystalline thin layer is formed from the crystalline nano particle provided to the top of the substrate(S550).
Abstract:
A crystallized layer can be quickly obtained and also the crystallized silicon can be easily obtained by depositing and drawing selectively the crystallized charged nano particle that is deposited on substrate. The film deposition apparatus(110) comprises a chamber(115) which is maintained under the upper pressure and have the substrate(140), a gas supply system introducing the reaction gas within the chamber(120), a heating element which emits the heat in order to dissociate the ionized reaction gas(130), and the electric field application part for applying the electric field in substrate(190). A step is for introducing the reaction gas and loading the substrate in the chamber. A step is for ionizing the reaction gas by using the heating element. A step is for generating nucleation in the ionized reaction gas. A step is for forming the nano particle while the nano particle is formed. A step is for depositing film by drawing the charged nano particle to the substrate using electric field.
Abstract:
고온에서 공간 전하에 의한 입계 포텐셜이 존재하는 세라믹스를 소결하는 동안 전기장을 가함으로써 미세 구조를 단계적 혹은 연속적으로 변화시켜 경사 구조형 세라믹스 소결체를 제조하는 방법을 제시한다. 본 발명에 따라서 세라믹스 소결시 전기장 효과를 이용하면 한 소결체 내에서도 위치에 따른 미세 구조의 차이를 유도할 수 있으며, 이러한 구조에 의한 새로운 기능의 발현을 기대할 수 있다. 또한, 입성장이 잘 되지 않는 세라믹스라도 부분적으로 입성장을 촉진시킬 수 있으므로, 각종 세라믹 물질의 단결정 성장제조에 응용할 수 있다.
Abstract:
증착 속도와 막의 특성 조절이 가능한 막 증착 장치 및 막 증착 방법을 제공한다. 본 발명에 따른 막 증착 장치는 내부에 기판이 장입되는 챔버, 반응 가스를 챔버 내에 도입하는 가스 공급계, 도입되는 반응 가스를 해리시키기 위하여 열을 방출하는 필라멘트, 일정한 교류 및 직류 전압을 인가할 수 있는 전원, 및 해리된 반응 가스로부터 기판 상에 막을 증착하는 동안 전원으로부터 인가된 전압을 이용해 기판의 상부, 측부 및 하부 중 적어도 어느 한 부분에 바이어스를 인가하며 기판과는 분리된 바이어스 도입부를 포함한다. 본 발명에 따른 막 증착 방법은 이러한 막 증착 장치 또는 다른 막 증착 장치를 이용할 수 있으며, 반응 가스를 해리시키는 단계, 및 해리된 반응 가스로부터 기판 상에 막을 증착하는 동안 기판에 바이어스를 인가하는 단계를 포함한다. 본 발명에 따르면, 반응 가스로부터 전하를 띤 나노 입자의 생성 거동을 반응 가스의 반응 조건에 의하여 변화시킬 수 있음과 동시에 이러한 생성 거동과 별도로, 일단 기상에서 생성된 전하를 띤 입자들의 전하 특성을 이용하여 바이어스를 인가하여 줌으로써 증착 거동 또한 개별적으로 조절하여, 이에 따른 증착 속도와 막의 특성 조절이 가능해진다.
Abstract:
PURPOSE: A method for manufacturing a gradient-structural ceramics is provided to control the microstructure of ceramics by changing it step-wisely or sequentially according to position using an electric field, and furthermore to induce the ceramics particle growth and the single crystal growth. CONSTITUTION: The method for manufacturing a gradient-structural ceramics comprises the steps of: forming a molded product of ceramics powder; and sintering the molded product while applying an electric field to induce the microstructural change of ceramics according to position. The sintered product has an intergranular potential occurring by the space charge at a high sintering temperature. The electric field may be applied to the sintered product in heat treatment after sintering.
Abstract:
A crystallized layer can be quickly obtained and also the crystallized silicon can be easily obtained by depositing and drawing selectively the crystallized charged nano particle that is deposited on substrate. The film deposition apparatus(110) comprises a chamber(115) which is maintained under the upper pressure and have the substrate(140), a gas supply system introducing the reaction gas within the chamber(120), a heating element which emits the heat in order to dissociate the ionized reaction gas(130), and the electric field application part for applying the electric field in substrate(190). A step is for introducing the reaction gas and loading the substrate in the chamber. A step is for ionizing the reaction gas by using the heating element. A step is for generating nucleation in the ionized reaction gas. A step is for forming the nano particle while the nano particle is formed. A step is for depositing film by drawing the charged nano particle to the substrate using electric field.
Abstract:
A method for depositing films using bias is provided to separately control deposition behavior by applying a bias to a substrate in consideration of charged behavior of charged nano-particles. A substrate is loaded in a chamber(15), and a gas supply system(20) is adapted to introduce a reaction gas into the chamber. A filament(30) is adapted to emit heat for dissociating the introduced reaction gas, and a power supply(70) is adapted to supply a constant alternate current or direct current voltage. A bias supply unit(80) is adapted to apply a bias to at least one of a top, a side and a bottom of the substrate using the voltage applied from the power supply while a film is deposited on the substrate from the dissociated reaction gas. The bias supply unit is separated from the substrate.