Abstract:
본 발명은 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막 및 이의 제조방법에 관한 것으로, 보다 상세하게는 분리막 일면에 폴리도파민과 전도성 물질을 포함하는 복합 코팅층을 적용하여 리튬 폴리설파이드의 용출이 억제된 리튬-황 전지에 관한 것이다. 본 발명에 따른 리튬-황 전지는 양극으로부터 용출되는 리튬 폴리설파이드를 폴리도파민의 다공성 구조가 흡착하여 용출 및 확산을 방지할 뿐만 아니라, 추가적인 전기 전도성을 부여하여, 양극 활물질의 반응 사이트를 제공하므로, 전지의 용량 및 수명 특성이 향상된다.
Abstract:
본 발명은 폴리도파민을 포함하는 전해액 및 이를 포함하는 리튬-황 전지에 관한 것으로 보다 상세하게는 전해액에 포함된 폴리도파민이 리튬-황 전지의 양극으로부터 용출되는 리튬 폴리설파이드를 흡착하는 기술에 관한 것이다. 본 발명에 따른 폴리도파민 입자가 첨가된 전해액을 이용하면, 전해액 내에 분산되어 있는 폴리도파민 입자들이 충·방전 시 양극으로부터 용출되는 리튬 폴리설파이드를 흡착하는 역할을 하므로, 이들의 확산을 억제, 즉 셔틀반응을 억제하여 리튬-황 전지용량 및 수명 특성을 향상시킬 수 있다.
Abstract:
본 발명은 패턴화를 요하는 금속박막 위에 규칙적인 다공성 고분자 패턴을 형성하는 단계; 마스크용 금속을 상기 형성된 홀에 선택적으로 증착하는 단계; 선택적으로 고분자층을 제거하는 단계; 및 상기 패턴화를 요하는 금속박막을 식각하는 단계를 포함하는 금속점 정렬의 형성방법을 제공한다. 상기 구성에 의하면, 종래 광식각 공정으로는 구현하기 힘든 백나노미터 이하의 미세패턴화가 가능하고, 간단한 공정에 의해 다양한 크기와 모양의 금속패턴을 형성할 수 있다. 또한 미리 원하는 성질의 자성 금속을 증착하므로 자성금속의 선택이 자유롭고, 사용되는 마스크 금속의 성질에 따라 종횡비가 큰 금속패턴을 형성하는 것이 가능하다.
Abstract:
A method for fabricating a nano-biochip by using nano-pattern of block copolymers is provided, thereby immobilizing real-life samples on the surface of the nanometer-sized biochip with high density without loss of tertiary structure of a protein in the real-life samples. The method for fabricating a nano-biochip by using nano-pattern of block copolymers comprises the steps of: (a) forming a metal thin layer with affinity to a bio-receptor on a substrate; (b) coating the metal thin layer with the block copolymers; (c) heating the block copolymers to induce self-assembly of the copolymers and form a regular structure; (d) etching the copolymers to form a porous nano-pattern; and (e) attaching the bio-receptor to the metal exposed by the porous nano-pattern, wherein the bio-receptor is an enzyme substrate, a ligand, an amino acid, a peptide, a protein, a nucleic acid, a lipid, a cofactor or a carbohydrate; the metal with affinity to the bio-receptor is Au, Ag, Pt, Nb, Ta, Zr or alloy of Co and Cr; and the block copolymer is polystyrene-polymethylmethacrylate(PS-PMMA), polystyrene-polybutadiene(PS-PB) or polystyrene-polyisoprene(PS-PI).
Abstract:
PURPOSE: Provided is a method for manufacturing bio nanoarrays by fixing biomaterial or bio-receptor on a nano-sized pattern based on self-assembly of polymeric supramolecules and stanning of metal. CONSTITUTION: The bio nanoarrays are manufactured by the following steps of: (i) forming a thin film of organic molecules inducing self-assembly on a substrate formed by spin-coating, rubbing or solution spreading; (ii) annealing the thin film to form ordered structure by self-assembling organic molecules, wherein the organic molecules are annealed by heating to 240deg.C, higher than phase transition temperature(230deg.C) of the liquid crystal and cooling; (iii) adsorbing metals selectively on the ordered structure formed in self-assembling by using RuO4; (iv) etching the thin film through reactive ion etching and/or ion milling to remove the parts on which the metal is not adsorbed, resulting in formation of a nano-sized pattern of organic molecules; (v) printing the nano-sized pattern having a uneven hole or columnar shape on the substrate; (vi) fixing biomaterial or bio-receptor bonding to biomaterials on the nano-sized pattern due to the amine-aldehyde reaction between amine group on the ends of biomaterial or bio-receptor and aldehyde on the surface of substrate, wherein the biomaterials are selected from the group consisting of protein, peptide, amino acid, ligand, carbohydrate, DNA, oligonucleotide and RNA.
Abstract:
PURPOSE: Provided is a simple method for manufacturing carbon nanotube(CNT) arrays by aligning carbon nanotubes on a nano-sized pattern based on self-assembly of polymeric supramolecules and stanning of metal. CONSTITUTION: The carbon nanotube arrays are manufactured by the following steps of: (i) forming a thin film of polymeric supramolecules inducing self- assembly on a substrate formed by spin-coating, rubbing or solution spreading, wherein the polymeric supramolecules are disk-shaped dendrimer, fan or corn-shaped supramolecules; (ii) annealing the thin film to form ordered structure by self-assembling polymeric supramolecules, wherein the supramolecules are annealed by heating to 240deg.C, higher than phase transition temperature(230deg.C) of the liquid crystal and cooling; (iii) adsorbing metals selectively on the ordered structure formed in self-assembling by using RuO4; (iv) reactive ion etching the thin film to remove the parts on which the metal is not adsorbed, resulting in formation of a nano-sized pattern of supramolecules; (v) printing the nano-sized pattern on the substrate; (vi) arraying carbon nanotubes on the pattern after depositing metal catalyst(Fe, Co or Ni) on the patterned substrate. Also, bio-nanoarrays are manufactured by attaching biomaterials or bio-receptor, bonding to biomaterials selected from the group consisting of protein, peptide, amino acid, DNA, ligand, carbo hydrate, RNA, etc. to CNT arrays.
Abstract:
PURPOSE: A method for forming a magnetic metal point alignment is provided to freely select a magnetic metal and form a metal pattern having a high aspect ratio according to the property of used mask metal by forming metal patterns of various sizes and shapes by a simple method and by previously depositing magnetic metal of a desired property. CONSTITUTION: A regular porous polymer pattern is formed on a metal thin film that needs to be patterned. Mask metal is selectively deposited in a hole. The polymer layer is selectively eliminated. The metal thin film that needs to be patterned is etched.
Abstract:
본 발명은 기판(substrate) 상에 유기 초분자 박막을 형성시킨 다음, 열처리에 의해 유기분자들의 자기조립(self-assembly)을 유도하고, 이에 따라 형성된 일정한 유기 초분자 구조에 UV를 조사하여 구멍모양의 나노패턴을 형성한 다음, 상기 나노패턴에 탄소나노브(CNT)를 배열하는 것을 특징으로 하는 CNT 어레이를 제작하는 방법에 관한 것이다. 또한 본 발명은 상기 CNT 어레이에 바이오물질 또는 바이오물질과 결합하는 바이오 리셉터를 부착시키는 것을 특징으로 하는 CNT-바이오 나노어레이의 제조방법에 관한 것이다.
Abstract:
PURPOSE: A method for preparing a nano or smaller-sized pattern, a method for preparing a membrane for a separator by using the nano-pattern, a method for forming a nano-pattern of a magnetic metal thin film for a high density record material, and a method for preparing a bio-nanoarray are provided, to allow a nano-sized pattern to be formed by simple several steps of process and to allow the orientation of microstructure to be controlled easily. CONSTITUTION: A nano or smaller-sized pattern is prepared by forming a thin film of a self-assembling organic supramolecule on a substrate; annealing it to form a cylindrical regular structure by the self-assembly of the organic supramolecule; and irradiating a UV ray to the structure to decompose the center part where a carbon chain is concentrated. Preferably the surface of the substrate is modified to control the orientation of a pattern structure before a pattern is formed. Preferably the self-assembling organic supramolecule is a disk-type or dendrimer fan-shaped organic supramolecule. Preferably the organic supramolecule is represented by the formula 6 or 7.