Abstract:
PURPOSE: A multi-channel long wavelength VCSEL array and a fabricating method thereof are provided to form constantly an interval of a laser oscillation wavelength by controlling a resonant interval. CONSTITUTION: A multi-channel long wavelength VCSEL array includes a semiconductor substrate(10), a bottom mirror(20), an active region(30), a current limit layer(40), a superlattice control layer(50), and a top mirror(60). The bottom mirror is formed on the semiconductor substrate. The active region is formed on the bottom mirror. The current limit layer is formed on the active region in order to limit efficiently the current and enhance the efficiency of the heat transfer. The superlattice control layer is formed on the current limit layer in order to control an interval of laser oscillation wavelength. The top mirror is formed on the superlattice control layer.
Abstract:
PURPOSE: A long wavelength vertical cavity surface emitting laser(VCSEL) and a method for manufacturing the same are provided to improve the current confinement structure by introducing a tunnel junction layer, a low energy ion injection and a heat spreading layer. CONSTITUTION: A long wavelength vertical cavity surface emitting laser(VCSEL) includes a laser active layer(30) and a current confinement structure(C). The current confinement structure(C) is provided with a barrier layer(40), a tunnel junction layer(50), a heat spread layer(60) and an electric insulation layer(70). The barrier layer(40) is formed on the laser active layer(30). The tunnel junction layer(50) is formed on the barrier layer(40) with stacking p-type and n-type materials alternatively. The heat spread layer(60) is formed on the tunnel junction layer(50). And, the electric insulation layer(70) is formed by using a low energy ion implantation method to electrically insulate the tunnel junction layer(50).
Abstract:
PURPOSE: A semiconductor optical device provided with a current confined structure is provided to secure the reliability by reducing the leakage current at the etched surface with filling an oxide layer or a nitride layer. CONSTITUTION: A semiconductor optical device provided with a current confined structure includes a semiconductor substrate(10), a first semiconductor layer(12), a second semiconductor layer(14), a third semiconductor layer(16). The first semiconductor layer(12) is formed on the semiconductor substrate(10) and made of at least one first conductive type of material. The second semiconductor layer(14) is formed on the first semiconductor layer(12) and is made of at least one material. The third semiconductor layer(16) is formed on the second semiconductor layer(16) and is made of at least one second conductive type of material which is opposite to the first conductive type. The first to third semiconductor layers(12,14,16) form the mesa structure, the side surface of at least one material layer constituting the first to third semiconductor layers(12,14,16) is recessed and the recessed portion is filled with oxide layer or a nitride layer, partially or totally.
Abstract:
PURPOSE: A method for fabricating an intracavity-contacted VCSEL including selective upper mirror layer growth is provided to simplify a heat emission path and a current injection path by using a selective region growth method. CONSTITUTION: A lower mirror layer(200), a laser resonance layer(300), a current injection hole forming layer, and an intracavity-contacted layer are sequentially grown on a substrate(100). An intracavity-contacted layer pattern(500) is formed by wet-etching the current injection hole forming layer. A mask pattern(600) is formed on the intracavity-contacted layer pattern(500). An upper mirror layer(250) is formed on an upper surface of the intracavity-contacted layer pattern(500). The first electrode(700) is formed on the intracavity-contacted layer pattern(500). The second electrode(750) is formed on a back surface of the substrate(100).
Abstract:
PURPOSE: A VCSEL(Vertical-Cavity Surface Emitting Laser) for long wavelength having a current caliber of an oxide layer is provided to minimize the loss of the current and the charges by using the InAlAs oxide layer for restraining the InAlAs current path layer. CONSTITUTION: An n-type lower mirror layer(120) and an active layer(130) are sequentially formed on an n-type InP substrate(110). The n-type lower mirror layer(120) satisfies a Bragg reflection condition. A current path layer(142) and a current limit layer(144) are formed on a part of the active layer(130). The current path layer(142) is surrounded by the current limit layer(144). A p-type internal resonance contact layer(150) is formed on the current path layer(142) and the current limit layer(144). An upper mirror layer(160) is formed on a part of the p-type internal resonance contact layer(150). A p-type electrode(170) is formed on the p-type internal resonance contact layer(150) and the upper mirror layer(160). An n-type electrode(180) is formed on a part of a back side of the n-type InP substrate(110).
Abstract:
PURPOSE: A vertical cavity surface emitting laser and a method of manufacturing the same are provided to minimize a generation of heat and to maximize a discharge of heat, which has a long wavelength and a thick inner resonance contact layer capable of realizing a current injection structure. CONSTITUTION: A lower mirror layer(5) is grown on a semiconductor substrate(6). An ion injection layer(8) is formed on a top of the lower mirror layer(5). An activated layer(3) is coated over the ion injection layer(8) of the mirror layer(5). An inner resonance contact layer(10) is covered on the activated layer(3). An undoped upper mirror layer(9) is formed on the inner resonance contact layer(10). The inner resonance contact layer(10) has a thermal conductivity of at least five times than that of the upper mirror layer(9) and a thickness of 0.7 times than that of the activated layer(3). An electrode(1) is coated on the upper mirror layer(9).
Abstract:
전류 제한 구조(current-confined structure)를 갖는 반도체 광소자의 제조방법를 제공한다. 본 발명은 반도체 기판 상에 제1 반도체층, 제2 반도체층 및 제3 반도층이 순차적으로 적층되는 메사 구조를 형성한 후, 상기 제1 반도체층, 제2 반도체층 및 제3 반도체층을 구성하는 물질층중 적어도 어느 하나의 물질층을 선택적으로 습식에칭하여 측면부에 리세스를 형성한다. 상기 리세스의 일부 혹은 전체를 채우면서 상기 제1 반도체층 내지 제3 반도체층의 측벽면에 산화막 혹은 질화막을 형성하여 상기 리세스된 물질층으로 전류 주입 경로를 갖게 한다. 이상과 같이 제조된 본 발명의 반도체 광소자는 광통신 파장 영역에서 사용 가능하고 역학적으로 안정하고 열전도도가 우수하며 상업성을 갖춘 전류 제한 구조를 갖는다.
Abstract:
본 발명은 반도체 반사경 또는 광학 필터로 이용될 수 있는 반도체 광소자의 제작 방법에 대해 개시한다. 에칭비가 서로 다른 두가지 이상의 반도체층들을 교대로 적층한 후 적어도 한 종류의 반도체층들을 선택적으로 에칭하여 에어갭(air gap)을 형성하고, 에어갭이 매립되도록 열전달 특성이 양호한 산화물 혹은 질화물을 증착한다. 에어갭에 매립된 산화물 혹은 질화물과 반도체층의 큰 굴절률 차이로 인하여 적은 주기로도 효과적으로 높은 반사율을 갖는 반도체 반사경 또는 광학 필터를 구현할 수 있다.
Abstract:
본 발명은 공기층 구경을 갖는 수직공진 표면방출레이저 구조 및 그 제조방법에 관한 것으로, 기판 상부에 굴절율이 다른 두 박막이 교대로 성장된 하부거울층, 하부거울층 상부에 위치하여 전류 및 열방출의 경로가 되는 열방출층, 열방출층 상부에 위치하여 공진하는 레이저빔이 광이득을 얻는 활성층, 활성층 상부에 위치하며 양 측면에 공기층 구경을 갖는 구경형성층, 구경형성층 상부에 굴절율이 다른 두 박막이 교대로 성장된 상부거울층, 상부거울층, 구경형성층 및 활성층의 측면과 상기 열방출층의 상부에 위치하는 절연층 및 상부거울층의 상부에 위치하는 전극을 포함한다. 따라서 기계적으로 안정적이고 효과적인 전류유도를 할 수 있으며, 단일 횡모드 발진이 가능하고 구동전력이 적고 동작속도가 빠른 통신용 장파장 광원의 공급이 가능해지는 효과가 있다.
Abstract:
PURPOSE: A vertical cavity surface emission layer structure provided with an air gap aperture and a method for manufacturing the same are provided to effectively induce the current by making the etching depth of the air gap aperture shallow. CONSTITUTION: A vertical cavity surface emission layer structure provided with an air gap aperture includes an air gap aperture provided with a substrate(100), a bottom mirror layer(102), a heat emission layer(104), an active layer(106), an aperture formation layer(108), a top mirror layer(110), an insulation layer(112) and an electrode(114). The heat emission layer(104) is positioned at the top of the bottom mirror layer(102) and is a role of the path of the current and the heat dissipation. The active layer(106) is positioned at the top of the heat emission layer(104) to obtain the optical gain of the laser. The aperture formation layer(108) is positioned on the top of the active layer and the top mirror layer(110) is formed on the top of the aperture formation layer(108), wherein the top mirror layer is formed by alternatively growing two layers. The insulation layer(112) is formed on the sides of the top mirror layer(110), the aperture formation layer(108) and the active layer(106) and the top of the heat emission layer(104). And, the electrode is formed on the top of the top mirror layer(110).