Abstract:
본 발명의 인공위성용 태양센서 시험장치의 정렬방법은, 인공위성의 자세제어에 사용되는 태양센서의 성능 측정을 위한 장치들의 정렬에 있어 태양 센서에 비춰지는 모사된 태양광의 정확한 입사각을 측정하기 위한, 시험장치들의 정렬방법에 관한 것이다. 본 발명은, 태양광모사수단과 측정정렬장치로서의 오토콜리메이터(autocollimator) 간의 정렬을 제1단계로 수행한 후, 다시 태양센서를 거치시키는 회전테이블과 오토콜리메이터와 정렬시키는 제2단계로 진행하는 특징이 있다. 따라서 본 발명은, 태양광모사수단과 회전테이블 및 태양 센서의 회전 중심과 회전축을 정렬함으로써 태양 센서의 성능 시험 시 오정렬에 의한 오차를 줄여 측정 정확도를 향상시키는 효과를 제공한다. 태양 센서, 태양광 모사기, 정렬, 오토콜리메이터(autocollimator)
Abstract:
PURPOSE: A maneuverability and controllability improvement method is provided to improve the attitude maneuver performance of a satellite by simultaneously applying a reaction wheel-based and thruster-based attitude controller when a part of the reaction wheel is out of order. CONSTITUTION: A thruster-based attitude controller(110) controls the drive of the thruster loaded in a satellite. A reaction wheel-based attitude controller(120) controls the drive of the reaction wheel of a satellite. A satellite dynamic mechanics model(130) diversifies the attitude of a satellite. In a satellite, a plurality of reaction wheels are included. A reaction wheel speed controller(121) produces a reaction wheel torque by using an input value from the reaction wheel-based attitude controller. A reaction wheel model(122) produces the angular momentum and the second torque of a reaction wheel by using inputted reaction wheel torque. A summer(103) sums a first torque calculating from a thruster model and a second torque calculating from the reaction wheel model.
Abstract:
A reaction wheel momentum distribution method is provided, which improves the attitude control mobility of satellite by calculating the zero torque of wheel through the simple calculation. The current speed and momentum of wheel are measured in real time. The measured current speed and the momentum are compared with the top speed and momentum set in advance. According to the current speed, momentum and top speed, and the difference of the momentum, the zero torque is calculated. The wheel torque required for the attitude control and stability of satellite is added to the zero torque. By using the input torque of the wheel, the wheel is made in the optimum bias momentum state.
Abstract:
본 발명 태양센서의 태양셀 정렬상태 오차 측정 및 보정 방법은, 위성의 태양센서를 몇가지 설치상태로부터 국부출력이 일치되는 때의 비틀림각을 측정하여 이 비틀림각으로부터 태양센서의 설치상태에 대한 오차를 계산하고 이를 보정하는, 태양셀 정렬상태 오차 측정 및 보정 방법에 관한 것이다. 본 발명은, ① 태양센서 설치수단 상부에 태양센서를 올려놓고 상기 태양센서와 태양광 모사수단이 일치되도록 초기정렬하는 제1단계와, ② 상기 제1단계의 초기정렬상태에서 상기 태양광 모사수단으로부터의 모사광에 따라, 제1상태로 위치시킨 상기 태양센서의 국부출력이 일치되는 지점에서 일정 기준선에 대한 상기 태양센서의 제1비틀림각(θ 1 )을 측정하는 제2단계와, ③ 상기 태양광 모사수단으로부터의 모사광에 따라, 제2상태로 위치시킨 상기 태양센서의 국부출력이 일치되는 지점에서 상기 기준선에 대한 상기 태양센서의 제2비틀림각(θ 2 )을 측정하는 제3단계와, ④ 상기 측정한 제1비틀림각(θ 1 ) 및 제2비틀림각(θ 2 )으로부터 초기정렬된 상기 태양센서(100)의 설치상태에 대한 오차를 도출하는 제4단계에 의해 정렬상태의 오차를 측정할 수 있으며, ⑤ 상기 제4단계에서 도출한 오차의 반대방향으로 보정하는 제5단계를 수행함으로써 측정된 오차를 보정할 수 있다. 따라서 본 발명은 보정수행 후 태양센서의 특성을 정확히 파악하고 측정 결 과의 부정확성을 줄이며 인공위성에 장착 시 지향 오차를 줄일 수 있는 효과를 제공한다. 태양 센서, 태양광 모사기, 광축, 정렬 오차, 평행 오차
Abstract:
본 발명은 단일영상을 이용한 자세각센서 삼차원 오정렬 보정방법에 관한 것으로써, 특히 우주선(Spacecraft) 또는 항공기(Aircraft)와 같은 비행체에 장착된 영상획득 카메라에서 촬영한 단일 영상정보로부터 지상제어점(Ground Control Point)을 계산하여 자세각센서의 삼차원 오정렬 정보를 정량적으로 추출하여 보정하는 단일영상을 이용한 자세각센서 삼차원 오정렬 보정방법에 관한 것이다. 본 발명의 구성은, 지상제어점 기준벡터의 계산단계; 영상정보를 이용한 지상제어점 관측벡터의 계산단계; 계산된 상기 지상제어점 기준벡터와 상기 지상제어점 관측벡터를 이용한 자세오차행렬 계산단계; 및 상기 자세오차행렬 계산값을 이용한 자세각센서 오정렬 보정단계;를 포함하여 이루어지는 단일영상을 이용한 자세각센서의 삼차원 오정렬 보정방법에 있어서, 상기 지상제어점 기준벡터의 계산단계에서는, 지구좌표계(Earth Centered Earth Fixed Coordinate System)의 비행체 위치벡터( )와 지상제어점 위치벡터( )를 이용하여 지상제어점 기준벡터 ( )를 다음의 식 에 의해 계산하는 것을 특징으로 한다. 인공위성, 항공기, 비행체, 지상제어점, 자세각센서, 자세오차행렬, 단일영상, 삼차원 오정렬 보정
Abstract:
A reaction wheel momentum management method using a null space vector is provided. In accordance with this method, when any one of at least four reaction wheels used for triaxial control is made unavailable or degraded, a degraded wheel is used as long as possible for improving the mobility of the behavior of a satellite. The method provides momentum management for an N-number of reaction wheels W1, W2, . . . WN used for triaxial control of a satellite B by using a null space vector, and includes the steps of: (S10) measuring the current speed and momentum of the wheels in real time and comparing the measured current speed and momentum with a preset maximum speed and momentum; (S20) calculating a zero torque Tn based on a difference between the current speed and momentum and the maximum speed Wi,max and momentum Hi,max by the step (S10); (S30) adding the zero torque acquired by the step (S20) to a wheel torque Ta required for controlling and stabilizing the attitude of the satellite; and (S40) making the wheels reach an optimum bias momentum state by using the input torque of the wheels acquired by the step (S30).
Abstract:
An aligning apparatus and an aligning method for a ground test of closed-loop attitude control using a star tracker are provided to enhance postural control capacity by reducing the ground test error of the star tracker. In an aligning method for a ground test of closed-loop attitude control using a star tracker, a monitor(10) and an autocollimator beam shaft of a five degrees of freedom table(20) for an autocollimator are aligned. The autocollimator and a five degrees of freedom table(30) for a collimator lens are aligned and a focus distance is adjusted. The autocollimator and the beam shaft of the star tracker are aligned and the center of rotation is adjusted. Then, a rotation shaft is aligned.
Abstract:
본 발명은 인공위성의 위성체 자세기동 시 사용하는 구동기 중 반작용휠과 추력기를 동시에 사용함으로써 기동성능 및 가제어성을 향상시키는 방법에 관한 것이다. 위성체 자세제어 시스템은, 위성체에 탑재된 추력기의 구동을 제어하는 추력기 기반 자세제어기(Thruster-Based Attitude Controller), 상기 위성체의 반작용휠의 구동을 제어하는 반작용휠 기반 자세제어기(Reaction Wheel-Based Attitude Controller) 및 상기 위성체의 자세를 변화시키는 위성체 동역학 모델(Spacecraft Dynamics)을 포함하여 구성된다. 여기서, 상기 위성체에는 상기 복수개의 반작용휠이 구비되고, 상기 반작용휠 중 일부의 고장으로 인한 결손 시 상기 추력기 기반 자세제어기와 상기 반작용휠 기반 자세제어기를 동시에 적용함으로써 위성체의 자세기동을 보정하게 된다. 인공위성 자세제어, 반작용휠(Reaction Wheel), 추력기(Thruster), 반작용휠 고장
Abstract:
PURPOSE: A posture angle sensor three dimensional misalignment correcting method using a monoscopic image is provided to implement the three dimensional misalignment calculation by using a single image information photographed by a camera. CONSTITUTION: A ground control point reference vector is calculated(S100). A ground control point observation vector is calculated by using the image information(S200). A posture error matrix is calculated by using the ground control point reference vector and the ground control point observation vector(S300). A posture angle sensor misalignment correction is implemented by using the posture error matrix calculation value(S400).
Abstract:
A moment gyro cluster for three axis attitude control of an artificial satellite is provided to improve torque performance by using an MPP(Moore-Penrose Pseudoinverse) driving law. A moment gyro cluster is mounted with a predetermined rotation angle(sigma) between 0° and 360°. Sequential torque inputs are applied as much as rotation amounts of an artificial satellite along an axis direction using a new pyramid shape which the moment gyro cluster is mounted with the predetermined rotation angle. Torque inputs corresponding to x, y, and z axes are sequentially applied in accordance with an artificial satellite attitude movement range in respective axes such that an artificial satellite attitude movement is performed.