Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
Abstract:
An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B 2 F 4 . Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
ION IMPLANTATION SYSTEM AND An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B F or 2 4 other alternatives to BF . Various arc chamber 3 thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics,detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system. Fig.l -34-
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.