Abstract:
The present invention relates to methods for forming dielectric layers on a substrate, such as in an integrated circuit. In one aspect of the invention, a thin interfacial layer is formed (30). The interfacial layer is preferably an oxide layer and a high-k material is preferably deposited on the interfacial layer by a process that does not cause substantial further growth of the interfacial layer. For example, water vapor may be used as an oxidant source during high-k deposition at less than or equal to about 300°C.
Abstract:
Methods and structures relating to the formation of mixed SAMs for preventing undesirable growth or nucleation on exposed surfaces inside a reactor are described. A mixed SAM (322) can be formed on surfaces (308) for which nucleation is not desired by introducing a first SAM precursor having molecules of a first length (334) and a second SAM precursor having molecules of a second length (338) shorter than the first. Examples of exposed surfaces for which a mixed SAM (322) can be provided over include reactor surfaces and select surfaces of integrated circuit structures (800), such as insulator and dielectric layers.
Abstract:
A precursor source vessel (100) comprises a vessel body (104), a passage (145) within the vessel body (104), and a valve (108, 110, 210) attached to a surface of the body (104). An internal chamber (111) is adapted to contain a chemical reactant, and the passage (145) extends from outside the body (104) to the chamber (111). The valve (108, 110, 210) regulates flow through the passage (145). The vessel (100) has inlet and outlet valves (108, 110), and optionally a vent valve (210) for venting internal gas. An external gas panel (97) can include at least one valve (182) fluidly interposed between the outlet valve (110) and a substrate reaction chamber (162). Gas panel valves (182) can each be positioned along a plane that is generally parallel to, and no more than about 10.0 cm from, a flat surface of the vessel (100). Filters (130) in a vessel Hd (106) or wall filter gas flow through the vessel's valves (108, 110, 210). A quick-connection assembly (102) allows fast and easy connection of the vessel (100) to a gas panel (97).
Abstract:
Compositions, methods, and systems permit selectively etching metal oxide from reactor metal parts (e.g., titanium and/or titanium alloys). The etching composition comprises an alkali metal hydroxide and gallic acid. The method is useful for cleaning reaction chambers used in the deposition of metal oxide films such as aluminum oxide.
Abstract:
A reactor having a housing that encloses a gas delivery system (14) operatively connected to a reaction chamber (16) and an exhaust assembly (18). The gas delivery system includes a plurality of gas lines for providing at least one process gas to the reaction chamber. The gas delivery system further includes a mixer (20) for receiving the at least one process gas. The mixer is operatively connected to a diffuser (22) that is configured to diffuse process gases. The diffuser is attached directly to an upper surface (24) of the reaction chamber, thereby forming a diffuser volume therebetween. The diffuser includes at least one distribution surface that is configured to provide a flow restriction to the process gases as they pass through the diffuser volume before being introduced into the reaction chamber. The reaction chamber defines a reaction space in which a semiconductor substrate is disposed for processing. The exhaust assembly is operatively connected to the reaction chamber for withdrawing unreacted process gases and effluent from the reaction space.
Abstract:
Systems and methods are delineated which, among other things, are for depositing a film on a substrate that is within a reaction chamber. In an exemplary method, the method may comprise applying an atomic layer deposition cycle to the substrate, wherein the cycle may comprise exposing the substrate to a precursor gas for a precursor pulse interval and then removing the precursor gas thereafter, and exposing the substrate to an oxidizer comprising an oxidant gas and a nitrogen-containing species gas for an oxidation pulse interval and then removing the oxidizer thereafter. Aspects of the present invention utilize molecular and excited nitrogen-oxygen radical/ionic species in possible further combination with oxidizers such as ozone. Embodiments of the present invention also include electronic components and systems that include devices fabricated with methods consistent with the present invention.
Abstract:
An atomic deposition (ALD) thin film deposition apparatus includes a deposition chamber configured to deposit a thin film on a wafer mounted within a space defined therein. The deposition chamber comprises a gas inlet that is in communication with the space. A gas system is configured to deliver gas to the gas inlet of the deposition chamber. At least a portion of the gas system is positioned above the deposition chamber. The gas system includes a mixer configured to mix a plurality of gas streams. A transfer member is in fluid communication with the mixer and the gas inlet. The transfer member comprising a pair of horizontally divergent walls configured to spread the gas in a horizontal direction before entering the gas inlet.
Abstract:
A semiconductor processing apparatus includes a reaction chamber, a loading chamber, a movable support, a drive mechanism, and a control system. The reaction chamber includes a baseplate. The baseplate includes an opening. The movable support is configured to hold a workpiece. The drive mechanism is configured to move a workpiece held on the support towards the opening of the baseplate into a processing position. The control system is configured to create a positive pressure gradient between the reaction chamber and the loading chamber while the workpiece support is in motion. Purge gases flow from the reaction chamber into the loading chamber while the workpiece support is in motion. The control system is configured to create a negative pressure gradient between the reaction chamber and the loading chamber while the workpiece is being processed. Purge gases can flow from the loading chamber into the reaction chamber while the workpiece support is in the processing position, unless the reaction chamber is sealed from the loading chamber in the processing position.
Abstract:
A semiconductor processing apparatus includes a reaction chamber (202, 302, 402), a movable susceptor (208, 308, 408, 508, 808), a movement element (210, 310, 810), and a control system (211, 811). The reaction chamber (202, 302, 402) includes a baseplate (212, 312, 412, 512, 812). The baseplate (212, 312, 412, 512, 812) includes an opening (250, 350, 450, 550). The movable susceptor (208, 308, 408, 508, 808) is configured to hold a workpiece (W). The movable element (210, 310, 810) is configured to move a workpiece (W) held on the susceptor (208, 308, 408, 508, 808) towards the opening (250, 350, 450, 550) of the baseplate (212, 312, 412, 512, 812). The control system (211, 811) is configured to space the susceptor (208, 308, 408, 508, 808) from the baseplate (212, 312, 412, 512, 812) by an unsealed gap (216, 316, 416, 516, 816) during processing of a workpiece (W) in the reaction chamber (202, 302, 402). Purge gases may flow through the gap (216, 316, 416, 516, 816) into the reaction chamber (202, 302, 402). Methods of maintaining the gap (216, 316, 416, 516, 816) during processing include calibrating the height of pads (520, 530) and capacitance measurements when the susceptor (208, 308, 408, 508, 808) is spaced from the baseplate (212, 312, 412, 512, 812).
Abstract:
Methods for forming metal silicate films are provided. The methods comprise contacting a substrate with alternating and sequential vapor phase pulses of a silicon source chemical, metal source chemical, and an oxidizing agent, wherein the metal source chemical is the next reactant provided after the silicon source chemical. Methods according to some embodiments can be used to form silicon-rich hafnium silicate and zirconium silicate films with substantially uniform film coverages on substrate surface.