Abstract:
A method is proposed for improving the adhesion between a diffusion barrier film and a metal film. Both the diffusion barrier film and the metal film can be deposited in either sequence onto a semiconductor substrate. A substrate comprising a first film, which is one of a diffusion barrier film or a metal film, with the first film being exposed at least at part of the surface area of the substrate, is exposed to an oxygen-containing reactant to create a surface termination of about one monolayer of oxygen-containing groups or oxygen atoms on the exposed parts of the first film. Then the second film, which is the other one of a diffusion barrier film and a metal film, is deposited onto the substrate. Furthermore, an oxygen bridge structure is proposed, the structure comprising a diffusion barrier film and a metal film having an interface with the diffusion barrier film, wherein the interface comprises a monolayer of oxygen atoms.
Abstract:
Method and structures are provided for conformal lining of dual damascene structures in integrated circuits, and particularly of openings formed in porous materials. Trenches and contact vias are formed in insulating layers. The pores on the sidewalls of the trenches and vias are blocked, and then the structure is exposed to alternating chemistries to form monolayers of a desired lining material. In exemplary process flows chemical or physical vapor deposition (CVD or PVD) of a sealing layer blocks the pores due to imperfect conformality. An alternating process can also be arranged by selection of pulse separation and/or pulse duration to achieve reduced conformality relative to a self-saturating, self-limiting atomic layer deposition (ALD) process. In still another arrangement, layers with anisotropic pore structures can be sealed by selectively melting upper surfaces. Blocking is followed by a self-limiting, self-saturating atomic layer deposition (ALD) reactions without significantly filling the pores.
Abstract:
Various reactors for growing thin films on a substrate (16) by subjecting the substrate (16) to alternately repeated surface reactions of vapor-phase reactants are disclosed. In one embodiment, the reactor (12) comprises a reaction chamber (14). A showerhead plate (67) divides the reaction chamber (14) into upper and lower parts. A first precursor is directed towards the lower half of the reaction chamber (14) and a second precursor is directed towards the upper half of the reaction chamber (14). The substrate (16) is disposed within the lower half of the reaction chamber (14). The showerhead plate (67) includes plurality passages (72) such that the upper half is in communication with the lower half of the reaction chamber (14). In another arrangement, the reaction chamber (14) includes a shutter plate (120). In other arrangements, the showerhead plate (67) is arranged to modify the local flow patterns of the gases flowing through the reaction chamber (14).
Abstract:
Methods of forming metal carbide thin films are provided. According to preferred embodiments, metal carbide thin films are formed in an atomic layer deposition (ALD) process by alternately and sequentially contacting a substrate in a reaction space with spatially and temporally separated vapor phase pulses of a metal source chemical, a reducing agent and a carbon source chemical. The reducing agent is preferably selected from the group consisting of excited species of hydrogen and silicon-containing compounds.
Abstract:
This invention concerns a method for modifying a source material used in an ALD process, a method for depositing transition metal nitride thin films by an ALD process and apparatus for use in such process. According to the present invention transition metal source materials are reduced by vaporizing a metal source material, conducting the vaporized metal source material, into a reducing zone comprising a solid reducing agent maintained at an elevated temperature. Thereafter, the metal source material is contacted with the solid or liquid reducing agent in order to convert the source material into a reduced metal compound and reaction byproducts having a sufficiently high vapor pressure for transporting in gaseous form.
Abstract:
Methods are disclosed for selective deposition on desired materials. In particular, barrier materials are selectively formed on insulating surfaces, as compared to conductive surfaces. In the context of contact formation and trench fill, particularly damascene and dual damascene metallization, the method advantageously lines insulating surfaces with a barrier material. The selective formation allows the deposition to be "bottomless," thus leaving the conductive material at a via bottom exposed for direct metal-to-metal contact when further conductive material is deposited into the opening after barrier formation on the insulating surfaces. Desirably, the selective deposition is accomplished by atomic layer deposition (ALD), resulting in highly conformal coverage of the insulating sidewalls in the opening.
Abstract:
Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches (60) and contact vias (62) are formed (100) in insulating layers (60, 56). The trenches (60) and vias (62) are exposed to alternating chemistries to form monolayers of a desired lining material (150). Exemplary process flows include alternately pulsed metal halide (104) and ammonia gases (108) injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal (160) for any given trench and via dimensions.
Abstract:
Method and structures are provided for conformal lining of dual damascene structures in integrated circuits. Trenches (60) and contact vias (62) are formed (100) in insulating layers (60, 56). The trenches (60) and vias (62) are exposed to alternating chemistries to form monolayers of a desired lining material (150). Exemplary process flows include alternately pulsed metal halide (104) and ammonia gases (108) injected into a constant carrier flow. Self-terminated metal layers are thus reacted with nitrogen. Near perfect step coverage allows minimal thickness for a diffusion barrier function, thereby maximizing the volume of a subsequent filling metal (160) for any given trench and via dimensions.
Abstract:
This invention concerns a method for depositing transition metal nitride thin films by an Atomic Layer Deposition (ALD) type process. According to the method vapor-phase pulses of a metal source material, a reducing agent capable of reducing metal source material, and a nitrogen source material capable of reacting with the reduced metal source material are alternately and sequentially fed into a reaction space and contacted with the substrate. According to the invention as the reducing agent is used a boron compound which is capable of forming gaseous reaction byproducts when reacting with the metal source material.
Abstract:
This invention concerns a process for producing integrated circuits containing at least one layer of elemental metal which during the processing of the integrated circuit is at least partly in the form of metal oxide, and the use of an organic compound containing certain functional groups for the reduction of a metal oxide layer formed during the production of an integrated circuit. According to the present process the metal oxide layer is at least partly reduced to elemental metal with a reducing agent selected from organic compounds containing one or more of the following functional groups: alcohol (-OH), aldehyde (-CHO), and carboxylic acid (-COOH).