Abstract:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Abstract:
A method for forming a film with an annealing step and a deposition step is disclosed. The method comprises an annealing step for inducing self-assembly or alignment within a polymer. The method also comprises a selective deposition step in order to enable selective deposition on a polymer.
Abstract:
A method of forming a directed self-assembled (DSA) layer on a substrate by: providing a substrate; applying a layer comprising a self-assembly material on the substrate; and annealing of the self-assembly material of the layer to form a directed self-assembled layer by providing a controlled temperature and gas environment around the substrate. The controlled gas environment comprises molecules comprising an oxygen element with a partial pressure between 10 - 2000 Pa.
Abstract:
A system and a method for forming a film with an annealing step and a deposition step is disclosed. The system performs an annealing step for inducing self-assembly or alignment within a polymer. The system also performs a selective deposition step in order to enable selective deposition on a polymer.
Abstract:
The disclosure relates to a sequential infiltration synthesis apparatus comprising: a reaction chamber constructed and arranged to accommodate at least one substrate; a first precursor flow path to provide the first precursor to the reaction chamber when a first flow controller is activated; a second precursor flow path to provide a second precursor to the reaction chamber when a second flow controller is activated; a removal flow path to allow removal of gas from the reaction chamber; a removal flow controller to create a gas flow in the reaction chamber to the removal flow path when the removal flow controller is activated; and, a sequence controller operably connected to the first, second and removal flow controllers and the sequence controller being programmed to enable infiltration of an infiltrateable material provided on the substrate in the reaction chamber. The apparatus may be provided with a heating system.
Abstract:
A method of forming a layer on a substrate is provided by providing the substrate with a hardmask material. The hardmask material is infiltrated with infiltration material during N infiltration cycles by: a) providing a first precursor to the hardmask material on the substrate in the reaction chamber for a first period Tl; b) removing a portion of the first precursor for a second period T2; and, c) providing a second precursor to the hardmask material on the substrate for a third period T3, allowing the first and second precursor to react with each other forming the infiltration material.
Abstract:
A method for forming a film with an annealing step and a deposition step is disclosed. The method comprises an annealing step for inducing self-assembly or alignment within a polymer. The method also comprises a selective deposition step in order to enable selective deposition on a polymer.
Abstract:
The disclosure relates to a sequential infiltration synthesis apparatus comprising: a reaction chamber constructed and arranged to accommodate at least one substrate; a first precursor flow path to provide the first precursor to the reaction chamber when a first flow controller is activated; a second precursor flow path to provide a second precursor to the reaction chamber when a second flow controller is activated; a removal flow path to allow removal of gas from the reaction chamber; a removal flow controller to create a gas flow in the reaction chamber to the removal flow path when the removal flow controller is activated; and, a sequence controller operably connected to the first, second and removal flow controllers and the sequence controller being programmed to enable infiltration of an infiltrateable material provided on the substrate in the reaction chamber. The apparatus may be provided with a heating system.
Abstract:
Methods for forming metal silicate films are provided. The methods comprise contacting a substrate with alternating and sequential vapor phase pulses of a metal source chemical, a silicon source chemical and an oxidizing agent. In preferred embodiments, an alkyl amide metal compound and a silicon halide compound are used. Methods according to preferred embodiments can be used to form hafnium silicate and zirconium silicate films with substantially uniform film coverages on substrate surfaces comprising high aspect ratio features (e.g., vias and/or trenches).
Abstract:
Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.