Abstract:
The invention relates to methods for producing 4-[aminoalkoxy]benzylamines of general formula (I) by means of catalytic hydrogenation of 4-[aminoalkoxy]benzonitriles of general formula (II). In the compounds of general formulae (I) and (II), R represents C1-C8 alkylene, and R and R independently represent C1-C8 alkyl or are linked to form a ring which can also contain a heteroatom. The hydrogenation is carried out at increased pressure and increased temperatures. The invention also relates to a method for producing the intermediate (II).
Abstract:
A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound. A process for the production of dialdehydes and/or ethylenically unsaturated monoaldehydes by reaction of at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst comprising at least one complex of a Group VIII metal with at least one ligand comprising a pnicogen chelate compound of formula (1). Q = bridging group of formula (2); A1, A2 = O, S, SiRaRb, NRc or CRdRe; Ra-Rc = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; Rd, Re = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl or two Rd groups and/or two Re groups form an intermolecular bridging group D; D = bivalent bridging group of formula (3)-(6); R9,R10 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, carboxyl, carboxylate or cyano or together form a 3-4C alkylene bridge; R11-R14 = H, alkyl, cycloalkyl, aryl, halo, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, SO3H, sulfonate, NE1E2, alkylene-NE1E2E3+X-, acyl or nitro; C = 0 or 1; Y = chemical bond; RI-RVI = H, alky, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; COORf, COO-M+, SO3Rf, SO3-M+, NE1E2, NE1E2E3+X-, alkylene-NE1E2E3+X-, ORf, SRf, (CHRgCH2O)xRf, (CH2N(E1))xRf, (CH2CH2N(E1))xRf, halo, trifluoromethyl, nitro, acyl or cyano or 2 neighboring groups, together with two neighboring C atoms of the benzene ring to which they are bonded form a condensed ring system of 1-3 further rings; Rf, E1-E3 = H, alkyl, cycloalkyl or aryl; R9 = H, methyl or ethyl; M+ = cation, X-=anion; x = 1-120; a, b = 0 or 1; Pn = P, As or Sb; R1-R4 = heteroaryl, heteroaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or NE1E2 with the proviso that is R1 and R3 are bonded via the N atom to the pnicogen atom bonded pyrrole ring or R1 with R2 and/or R3 together with R4 form a divalent group E of formula Py-I-W or R1 and R2 and/or R3 and R4 form a bispyrrole group of formula Py-I-Py; Py = pyrrole group that is bonded via its N atom to Pn; I = chemical bond, O, S, SiRaRb, NRc, optionally substituted 1-10C alkylene or CRhCRi; W = cycloalkyl, cycloalkoxy, aryl, aryloxy, heteroaryl or heteroaryloxy; Rh and Ri = H, alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl
Abstract:
The invention relates to a process for preparing 4-[aminoalkoxy]benzylamines of the general formula (I) by catalytically hydrogenating 4-[aminoalkoxy]benzonitriles of the general formula (II) where, in the compounds of the general formulae I and II, R 1 is C 1 -C 8 -alkylene, R 2 and R 3 are each independently C 1 -C 8 -alkyl or are joined to give a ring which may additionally contain a heteroatom, which comprises carrying out the hydrogenation at elevated pressure and elevated temperatures. The invention further relates to a process for preparing the intermediate (II).
Abstract:
The present invention relates to a process for preparing optically active aldehydes or ketones which have from 3 to 25 carbon atoms and at least one racemizable stereocenter by catalytic dehydrogenation of the corresponding optically active primary or secondary alcohols in the gas phase in the presence of a catalyst.
Abstract:
The invention relates to a method for the production of 1,7 octadiene by reacting metathesis of cyclohexene with ethylene. The invention also relates to the production of 1,10-decandiol by hydroformulating 1,7 octadiene produced according to said method. The invention further relates to a method for the production of muscone or olefinically unsaturated analogs thereof using 1,10 decandiol which is obtainable in said manner.