Abstract:
The present invention relates to a ferrous zeolite, wherein the number of iron centers, relative to the zeolite, is greater than the number of cation positions of the zeolite. The present invention further relates to a ferrous zeolite that can be produced by gas phase reaction with iron pentacarbonyl, comprising a greater specific surface area than analogous ferrous zeolites produced by ion exchange and/or more hydrothermally stable than analogous ferrous zeolites produced by ion exchange. The present invention further relates to a ferrous zeolite of BETA structure that can be produced by gas phase reaction with iron pentacarbonyl, wherein the number of iron clusters greater than 10 nm is less than 15 wt%, relative to the total amount of iron. The present invention further relates to a method for producing ferrous zeolithic material, characterized in that doping with iron takes place by means of a gas phase reaction using iron pentacarbonyl. The present invention further relates to a method for catalytically reducing nitrogen oxides by adding ammoniac and using catalysts comprising said ferrous zeolithic material.
Abstract:
Procedimiento para la preparación de un material zeolítico que contiene hierro con las topologías CHA o LEV, caracterizado porque el dopaje con hierro se realiza a través de una reacción en fase gaseosa usando pentacarbonilo de hierro y el dopaje con hierro se realiza en dos etapas parciales (i) carga en fase gaseosa y (ii) descomposición térmica, caracterizado porque en otra etapa parcial (iii) se hace fluir a través del material zeolítico un gas portante con temperaturas de 500 a 1000 ºC a una presión de 10 a 1.000 kPa, en el que se usa como gas portante vapor de agua.
Abstract:
The present invention relates to a ferrous zeolite, wherein the number of iron centers, relative to the zeolite, is greater than the number of cation positions of the zeolite. The present invention further relates to a ferrous zeolite that can be produced by gas phase reaction with iron pentacarbonyl, comprising a greater specific surface area than analogous ferrous zeolites produced by ion exchange and/or more hydrothermally stable than analogous ferrous zeolites produced by ion exchange. The present invention further relates to a ferrous zeolite of BETA structure that can be produced by gas phase reaction with iron pentacarbonyl, wherein the number of iron clusters greater than 10 nm is less than 15 wt%, relative to the total amount of iron. The present invention further relates to a method for producing ferrous zeolithic material, characterized in that doping with iron takes place by means of a gas phase reaction using iron pentacarbonyl. The present invention further relates to a method for catalytically reducing nitrogen oxides by adding ammoniac and using catalysts comprising said ferrous zeolithic material.
Abstract:
Verfahren zur Hydrierung von Butadiin zu Butan an einem Katalysator, der mindestens ein Platingruppenmetall auf einem anorganischen Metalloxid als Träger aufweist, wobei die Hydrierung bei einem Druck im Bereich von 1 bis 40 bar und einer Temperatur im Bereich von 0 bis 100 °C durchgeführt wird und 0,05 bis 5 Gew.-%, bezogen auf den gesamten Katalysator, Platingruppenmetall auf dem Träger vorliegt, dadurch gekennzeichnet, dass ein aus der Gaswäsche von Acetylen mit einem organischen Lösungsmittel, ausgewählt aus N-Methylpyrrolidon, Dimethylformamid, Aceton, Furfurol, Acetonitril, Dimethylacetamid oder Gemischen davon erhaltener Strom eingesetzt wird, in dem, bezogen auf Butadiin, bis zu 20 Gew.-% Vinylacetylen und bis zu 10 Gew.-% Acetylen vorliegen können und im Strom 1 bis 10 Gew.-%, bezogen auf den gesamten Strom, an Butadiin enthalten sind, die Hydrierung mit einem Flüssigkreislauf mit einem Gewichtsverhältnis von Recyclestrom zu Zustrom im Bereich von 2 bis 20 betrieben wird und der Katalysatorträger eine Porosität von 0,2 bis 1,0 ml/g aufweist.
Abstract:
zeólito contendo ferro, processo para a preparação de um material zeolítico contendo ferro, e, uso do meterial zeolítico contendo ferro. a presente invenção refere-se a um zeólito ferroso, em que o número de centris de ferro, em relação ao zeólito, é maior do que o npumero de posições de cátion do zeólito. a presente invenção refere-se ainda a um zeólito ferroso, que pode ser produzido através de reação em fase gasossa com ferro pentacarbonila, compreendendo uma área superficial específica maior do que os zeólitos ferrosos análogos, produzidos através de troca iônica e/ou mais hidrotermicamente estáveis do que os zeólitos ferrosos análogos produzidos através de estrutura beta, que pode ser produzido através de reação em fase gagos com ferro pentacarbonila, em que o número de aglomerados de ferro maiores do que 10 nm é inferior a 15%, em peso, em relação à quantidade total de ferro. a presente invenção refere-se ainda a um método para a produção de um material zeolítico ferroso, caracterizado pelo fato de que a dopagem com ferro ocorre por meio de reação de uma fase gasosa, usando ferro pentacarbonila. a presente invenção refere-se ainda a um método para a redução catalítica de óxidos de nitrogênio através da adição de amoníaco e uso de catalisadores compreendendo o referido material zeolítico ferroso.
Abstract:
La invención se refiere a un método para producir un catalizador que comprende de 0.05 a 0.25 % en peso de metales nobles, preferiblemente para la deshidrogenación oxidativa de alcoholes olefínicamente instaurados, que comprende los siguientes pasos: a) generación de un plasma de corriente directa, b) introducción de metal y material de soporte en el plasma, c) vaporización de metal y material de soporte y material portador en el plasma o "rociado" del cuerpo sólido de metal y material portador en el plasma y haciendo reaccionar las partículas, d) enfriamiento en donde se obtienen las partículas muy pequeñas de un material mixto, y e) aplicación del material mixto al portador de catalizador actual. La invención además se refiere a un catalizador producido correspondientemente y al uso del mismo.
Abstract:
The invention relates to the use of a composition comprising a nanoscale powder, a porous ceramic powder, and a solvent to protect a metallic surface against chemical attacks at high temperatures, in particular in reducing and/or carburizing atmosphere, and to a corresponding method. The invention further relates to a system part that comprises a metallic surface that is exposed to a reducing and/or carburizing atmosphere in the operating state, wherein the surface is coated with a porous protective coating that has a specific surface area of at least 20 m2/g.
Abstract:
The method comprises introducing raw materials needed for thermal partial oxidation into a reactor (1) and mixing in a mixing zone, and supplying the mixture by a diffuser into a burner block (15) provided with channels (2). The mixture flowing through the channels forms a turbulent flow field by turbulence generators arranged in the channels due to the predetermined deflection of flow direction. The turbulence generators are inserted in all channels and are arranged in such a manner that it forms an alternative rotational direction during the flow of the material through the channels. The method comprises introducing raw materials needed for thermal partial oxidation into a reactor (1) and mixing in a mixing zone, and supplying the mixture by a diffuser into a burner block (15) provided with channels (2). The mixture flowing through the channels forms a turbulent flow field by turbulence generators arranged in the channels due to the predetermined deflection of flow direction. The turbulence generators are inserted in all channels and are arranged in such a manner that it forms an alternative rotational direction during the flow of the material through the channels related to neighboring channels. Auxiliary flames (14) used for flame stabilization are generated at a distance of 4-15 times of the channel diameter from the lower edge of the burner block measured in a combustion chamber (4). An independent claim is included for a device for the thermal partial oxidation of hydrocarbons in a reactor for producing acetylene and synthesis gas.