Abstract:
The invention relates to a method for the parallel production of hydrogen (3) and of one or a plurality of carbon-containing products (8). In the method, hydrocarbons (2) are introduced into a reaction chamber (R) and are thermally decomposed into carbon and hydrogen in the presence of a carbon-rich granulated material (W). The invention is characterised in that at least a portion of the thermal energy necessary for the decomposition of the hydrocarbons is introduced into the reaction chamber (R) via a gaseous heat transfer medium.
Abstract:
The invention relates to a method for the parallel production of hydrogen and of one or more carbon-containing products. In the method, hydrocarbons are introduced into a reaction chamber (R) and are thermally decomposed into carbon and hydrogen in the presence of a carbon-rich granulated material (W). The invention is characterised in that at least a portion of the thermal energy necessary for the decomposition of the hydrocarbon is introduced into the reaction chamber (R) via a gaseous heat transfer medium.
Abstract:
The present invention relates to a reactor for the photocatalytic treatment of liquid or gas currents, comprising a pipe which the current to be treated flows through. At least one light source, at least one planar means M1 and at least one planar means M2 are arranged inside said pipe, wherein M1 has at least one photocatalytically active material and M2 reflects the light radiation emitted from the at least one light source. The reflective surface of the at least one means M2 and the inner wall of the pipe together form an angle that is greater than or equal to 0°, such that the light emitted from the light source is reflected from the at least one means M2 onto the photocatalytically active material. The invention further relates to a method for the photocatalytic treatment of liquid or gas currents by irradiation of light in the reactor according to the invention.
Abstract:
The present invention relates to a method for operating a descending moving bed reactor with flowable granular material, said method comprising the steps of (i) Filling a upper lock-hopper with granular material and/or emptying a lower lock-hopper, (ii) Purging the lock-hoppers with purging gas, (iii) Filling the reaction chamber comprising a descending moving bed from the upper lock-hopper and/or emptying the reaction chamber into the lower lock-hopper, wherein the pressure equalization between the reaction chamber and lock-hopper is achieved with product gas, (iv) optionally Relieving the lock-hoppers and conveying the product gas flow into the product line and (v) Purging the lock-hoppers with purging gas.
Abstract:
Tubo compuesto multicapa con un coeficiente de transición térmica de > 1.000 W/m2/K, que comprende al menos dos capas, una capa interior de cerámica oxidada monolítica no porosa y una capa exterior de cerámica compuesta de fibras oxídica, siendo el grosor de la capa de cerámica compuesta de fibras oxídica de 0,5 mm a 3 mm, en donde el grosor de la capa de cerámica oxidada monolítica es de 0,5 mm a 45 mm, siendo el grosor total de las paredes formado por al menos dos capas de 1 mm a 50 mm, en donde el grosor de la capa de cerámica compuesta de fibras oxídica es inferior al 90% del grosor total de la pared, en donde el diámetro interior de tubo del tubo compuesto es de 20 mm a 1.000 mm, en donde las dos capas están unidas entre sí por fuerza externa o por aportación de material y forman un componente, y en donde por "cerámica compuesta de fibras oxídica" se entiende una matriz de partículas cerámicas oxídicas que contiene fibras cerámicas, oxídicas y/o no oxídicas.
Abstract:
The present invention relates to an integrated process containing the following steps (i) pyrolysis of hydrocarbons to carbon and hydrogen, (iia) removal of at least a part of the produced carbon in step (i) and at least partly further processing of said carbon into a carbon containing electrode, (iib) removal of the hydrogen produced in step (i) and at least partly use said hydrogen for providing energy, preferably electric energy or heat, for the electrode production in step (iia). In addition, the present invention relates to a joint plant containing (a) at least one reactor for pyrolysis process, (b) at least one reactor for the production of electrodes for an aluminum process, (c) a power plant and/or at least one gas-fired burner and optionally (d) at least one reactor for the electrolysis for producing aluminum.
Abstract:
The invention relates to a process for parallel preparation of hydrogen and one or more carbonaceous products, in which hydrocarbons are introduced into a reaction space (R) and decomposed thermally to carbon and hydrogen in the presence of carbon-rich pellets (W). It is a feature of the invention that at least a portion of the thermal energy required for the hydrocarbon decomposition is introduced into the reaction space (R) by means of a gaseous heat carrier.