Abstract:
A semiconductor device comprising: a substrate; a first reflector on the substrate; a second reflector on the first reflector; a semiconductor system directly contacting the first reflector and the second reflector and comprising a first side wall; and an insulating layer covering the first side wall and formed between the substrate and the first reflector.
Abstract:
A light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer formed on the first semiconductor layer, and an active layer formed therebetween, wherein the first semiconductor layer includes a surrounding exposed region not covered by the active layer, and the surrounding exposed region surrounds the active layer; a conductive layer formed on the second semiconductor layer, including a first conductive region extending toward and contacting the surrounding exposed region of the first semiconductor layer; an electrode layer formed on the first conductive region in the surrounding exposed region; an outside insulating layer covering a portion of the conductive layer and the electrode layer, and including a first opening exposing the other portion of the conductive layer; a bonding layer covering the outside insulating layer and electrically connecting to the other portion of the conductive layer through the first opening; and a conductive substrate, wherein the semiconductor stack is located on one side of the bonding layer, and the conductive substrate is located on the other side of the bonding layer.
Abstract:
A light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer and an active layer formed therebetween; a surrounding exposed region formed on peripheries of the semiconductor stack, exposing a surface of the first semiconductor layer; a conductive layer formed on the second semiconductor layer, including a first conductive region extending toward and contacting the surface of the first semiconductor layer in the surrounding exposed region; an electrode layer formed on the surrounding exposed region, surrounding the semiconductor stack, contacting the conductive layer and including an electrode pad not overlapping the semiconductor stack; an outside insulating layer covering a portion of the conductive layer and the electrode layer, including a first opening exposing the other portion of the conductive layer; a bonding layer covering the outside insulating layer and electrically connecting to the other portion of the conductive layer through the first opening; and a conductive substrate.
Abstract:
A thin-film deposition apparatus comprises a chamber; a carrier in the chamber; a showerhead on the carrier, wherein the showerhead comprises multiple first gas-dispensing holes, multiple second gas-dispensing holes and multiple plasma-generating portions; and a first gas inlet system for providing a first process gas, wherein the first process gas outputted from the multiple first gas-dispensing holes.
Abstract:
The present disclosure provides a semiconductor device including a carrier; a current blocking layer, formed on the carrier; a function structure, formed on the current blocking layer and comprising a surface opposite to the current blocking layer; a protective structure, formed on the function structure and exposing a portion of the surface; and an electrode, formed on the protective structure and exposing the portion of the surface.
Abstract:
The present invention discloses a light-emitting device and the manufacturing method thereof. The light-emitting device comprises: a substrate including a protrusion part and a base part; a lattice buffer layer formed on the substrate and including a first region substantially right above the protrusion part and a second region substantially right above the base part, wherein the first region includes a recess therein; a light-emitting stack formed on the lattice buffer layer and the recess; and electrodes formed on and electrically connected to the light-emitting stack.
Abstract:
A method of manufacturing a light-emitting device comprises the steps of: providing a substrate; forming a mask block contacting the substrate and exposing a portion of the substrate; implanting an ion into the portion of the substrate to form an ion implantation region; and forming a semiconductor stack on the substrate such that multiple cavities are formed between the semiconductor stack and the ion implantation region; wherein the mask block comprises a material made of metal or oxide.
Abstract:
An optoelectronic device comprising, a substrate and a first transition stack formed on the substrate comprising a first transition layer formed on the substrate having a hollow component formed inside the first transition layer, a second transition layer formed on the first transition layer, and a reflector rod formed inside the second transition layer.
Abstract:
A photo-detecting device includes a first semiconductor layer with a first dopant, a light-absorbing layer, a second semiconductor layer, and a semiconductor contact layer. The second semiconductor layer is located on the first semiconductor layer and has a first region and a second region, the light absorbing layer is located between the first semiconductor layer and the second semiconductor layer and has a third region and a fourth region, the semiconductor contact layer contacts the first region. The first region includes a second dopant and a third dopant, the second region includes second dopant, and the third region includes third dopant. The semiconductor contact layer has a first thickness greater than 50 Å and smaller than 1000 Å.
Abstract:
A light-emitting device includes a semiconductor stack including a first semiconductor layer, a second semiconductor layer formed on the first semiconductor layer, and an active layer formed therebetween, wherein the first semiconductor layer includes a surrounding exposed region not covered by the active layer, and the surrounding exposed region surrounds the active layer; a conductive layer formed on the second semiconductor layer, including a first conductive region extending toward and contacting the surrounding exposed region of the first semiconductor layer; an electrode layer formed on the first conductive region in the surrounding exposed region; an outside insulating layer covering a portion of the conductive layer and the electrode layer, and including a first opening exposing the other portion of the conductive layer; a bonding layer covering the outside insulating layer and electrically connecting to the other portion of the conductive layer through the first opening; and a conductive substrate, wherein the semiconductor stack is located on one side of the bonding layer, and the conductive substrate is located on the other side of the bonding layer.