Abstract:
A method in a radio network node for handling a Device-to-Device, D2D, communication is provided. The D2D communication is wireless, and the radio network node is comprised in a wireless communication system. After receiving (201) from a first user equipment, an indication of resources that are currently available in the first user equipment for D2D communication, the radio network node identifies (202) whether or not the first user equipment currently has capacity for a D2D communication based on the received indication. The resources relates to hardware resources, to combined hardware resources and radio resources, or to combined software resources, hardware resources and radio resources.
Abstract:
The invention discloses a method (400) for a cellular communications system (100, 200), in which there is a first plurality of cells (f1 -fN, f1'-fN') and a second plurality of base stations (120, 220), each base station controlling the traffic to and from user terminals (130, 230) in a cell. User terminals can assume an idle mode, where a user terminal when in an idle mode performs cell reselection, comprising an evaluation of the cells (f1 -fN, f1'-fN') which are available to the user terminal (130, 230). The base stations (120, 220) of a number of cells in the system transmit a set of reselection probabilities, each probability in said set being the probability with which a terminal when in idle mode may carry out a reselection from its present cell to the cell to which the probability refers.
Abstract:
A radio access network comprises a radio access network node and plural wireless terminals. At least a first wireless terminal is configured to utilize mixed carrier aggregation. A relay node transmits an unlicensed component carrier allocated to the first wireless terminal between the radio access network node and the first wireless terminal. The relay node may relay uplink data, downlink data, or both.
Abstract:
The present invention relates to methods and arrangements for controlling uplink transmit power to be used by the UE. The UE comprises multiple radio interfaces wherein at least one of the multiple interfaces is a cellular radio interface. The UE stores information comprising a total transmit power budget set aside for use over the multiple radio interfaces of the UE and receives transmit power control commands from a network node on the cellular radio interface indicating whether the UE should increase or decrease or maintain the uplink transmit power on the cellular radio interface. Transmit power levels to be used for uplink transmissions over the multiple radio interfaces based on the received transmit power control commands are calculated, wherein the said total transmit power budget for the multiple radio interfaces is taken into account.
Abstract:
The present invention relates to a method and arrangements for saving battery power consumption of a UE in mobile telecommunication system. The method comprises the step of checking whether the UE fulfills at least one of the pre-determined criteria that a subscriber explicitly requests to receive paging at extended DRX cycle and that a new cell is not reselected during a pre-determined time. If the at least one of the pre-determined criteria is fulfilled the step of applying an extended DRX cycle is performed.
Abstract:
A method for filtering and gating data flow in a QoS connection between a remote host and user equipment in a packet date network using policy control mechanisms includes a remote host initiating an application in an application server and a corresponding session between the remote host and the user equipment ("UE") via the application server. The UE requests, to a gateway support node ("GGSN") of the network, establishment of a network bearer service between the UE and the remote host. A corresponding policy control function ("PCF") in a policy server receives, from the application server, filtering data derived from session data received by the application server during the session. The GGSN interrogates the corresponding PCF in the policy server to initialize a gate using policy control filtering data at the GGSN. The gate then filters the data flow in the QoS connection according to the policy control filtering data.
Abstract:
Systems and methods are disclosed for selecting resources for direct device to device (D2D) communications in a cellular communication, network. in one embodiment, a downlink resource is selected as a resource tor a direct D2D communication link between a first wireless device and a second wireless device if a base station serving each of the first and second wireless devices is equipped with an interference cancellation receiver and both the first and second wireless devices are less than a predefined threshold radio distance from their serving base station. An uplink resource is selected as a resource for the direct D2D communication link if the base station serving each of the first and second wireless devices is equipped with an interference cancellation receiver and at least one of the first and second wireless devices is more than the predefined threshold radio distance from its serving base station.
Abstract:
Systems and methods are disclosed for selecting resources for direct device to device (D2D) communications in a cellular communication network. Preferably, resources for the direct D2D communications are selected to minimize, or at least substantially reduce, interference that results from the direct D2D communications in the cellular communication network. In general, either an uplink resource or a downlink resource of the cellular communication network is selected for a direct D2D communication link between a first wireless device and a second wireless device in order to minimize, or at least substantially reduce, interference caused to a third wireless device that uses the same uplink and downlink resources in the same and/or a neighboring cell of the cellular communication network.