Silicon Drift Detector for use in a charged particle apparatus
    1.
    发明公开
    Silicon Drift Detector for use in a charged particle apparatus 有权
    硅漂移探测器用于带电粒子仪器

    公开(公告)号:EP2544026A1

    公开(公告)日:2013-01-09

    申请号:EP12173975.9

    申请日:2012-06-28

    Applicant: FEI COMPANY

    Abstract: The invention relates to a detector with a Silicon Drift Diode (SDD) ( 10 , 200) for use in a charged particle apparatus. Such detectors are well-known for the detection of X-rays, but are not capable to detect secondary or backscattered electrons for two reasons:
    1. the volume (20) in the SDD where electron/hole pairs must be generated is too far removed from the surface ( 18 ). This can be solved by known techniques resulting in a shallow layer, for example using thin boron layers.
    2. Secondary and/or backscattered electrons are generated with a much higher efficiency than X-rays, as a result of which the current of backscattered electrons is typically too high to be detected due to the limited count rate of a SDD (typically up to 1 Mc/s, equivalent to a maximum electron current of up to 0.16 pA).
    The invention describes a detector with a SDD ( 200 ) and an amplifier (206), and a feed-back element in the form of, for example, a resistor (208) or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch (209), the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.

    Abstract translation: 本发明涉及一种用于带电粒子装置的具有硅漂移二极管(SDD)(10,200)的检测器。 这种探测器众所周知用于检测X射线,但由于以下两个原因而不能检测二次或背散射电子:1. SDD中必须产生电子/空穴对的体积(20)太远 从表面(18)开始。 这可以通过导致浅层的已知技术来解决,例如使用薄硼层。 2.以比X射线高得多的效率产生次级和/或背散射电子,结果背散射电子的电流通常太高而不能被检测,这是由于SDD的有限计数率(通常高达 1 Mc / s,相当于最大电子电流高达0.16 pA)。 本发明描述了具有SDD(200)和放大器(206)的检测器以及可切换地连接到放大器的输出端的形式为例如电阻器(208)或二极管的反馈元件。 当通过开关(209)选择反馈元件时,检测器以电流测量模式操作以确定电子电流,并且当元件未被选择时,检测器以其众所周知的脉冲高度测量模式操作以确定 X射线量子。

    Charged-particle microscopy imaging method
    2.
    发明公开
    Charged-particle microscopy imaging method 有权
    Mikroskopiebildgebungsverfahren mit geladenen Teilchen

    公开(公告)号:EP2557586A2

    公开(公告)日:2013-02-13

    申请号:EP12179763.3

    申请日:2012-08-09

    Applicant: FEI COMPANY

    Abstract: A method of investigating a sample using charged-particle microscopy, comprising the following steps:
    - Irradiating a surface of the sample using a probing beam of charged particles in a plurality (N) of measurement sessions, each measurement session having an associated beam parameter (P) value that is chosen from a range of such values and that differs between measurement sessions;
    - Detecting stimulated radiation emitted by the sample during each measurement session, associating a measurand (M) therewith and noting the value of this measurand for each measurement session, thus allowing compilation of a data set (S) of data pairs {P n , M n }, where n is an integer in the range 1 ≤ n ≤ N,

    wherein a mathematical technique is employed to automatically process the data set (S) in a manner that comprises the following steps:
    - Defining a Point Spread Function (K) that, for each value of n, has a kernel value K n representing the behavior of the probing beam in a bulk of the sample for beam parameter value P n ;
    - Defining a spatial variable (V) that represents a physical property (O) of the sample as a function of position in its bulk;
    - Defining an imaging quantity (Q) that, for each value of n, has a value Q n that is a three-dimensional convolution of K n and V, such that Q n = K n * V;
    - For each value of n, computationally determining a minimum divergence

    between M n and Q n , wherein one solves for V while applying constraints on the values K n .

    Abstract translation: 一种使用带电粒子显微镜研究样品的方法,包括以下步骤: - 在多个(N)个测量会话中使用带电粒子的探测光束照射样品的表面,每个测量会话具有相关的光束参数( P)值,其从这样的值的范围中选择并且在测量会话之间不同; - 检测在每个测量会话期间由样本发射的受激辐射,将被测量(M)与其相关联并注意每个测量会话的该被测量的值,从而允许编译数据对{P n,M n},其中n是1‰¤n‰N的整数,其中采用数学技术来以包括以下步骤的方式自动处理数据集(S): - 定义点扩展函数( K),对于n的每个值,具有表示用于波束参数值P n的样本的大部分中的探测光束的行为的核值K n; - 定义表示样本的物理属性(O)的空间变量(V),作为其体积中位置的函数; - 定义对于n的每个值具有作为K n和V的三维卷积的值Q n的成像量(Q),使得Q n = K n * V; - 对于n的每个值,计算确定M n和Q n之间的最小发散度,其中一个解决V,同时对值K n施加约束。

    Charged-particle microscopy imaging method
    3.
    发明公开
    Charged-particle microscopy imaging method 审中-公开
    带电粒子显微成像方法

    公开(公告)号:EP2557584A1

    公开(公告)日:2013-02-13

    申请号:EP11177091.3

    申请日:2011-08-10

    Applicant: FEI COMPANY

    Abstract: A method of investigating a sample using charged-particle microscopy, comprising the following steps:
    - Irradiating a surface of the sample using a probing beam of charged particles in a plurality (N) of measurement sessions, each measurement session having an associated beam parameter (P) value that is chosen from a range of such values and that differs between measurement sessions;
    - Detecting stimulated radiation emitted by the sample during each measurement session, associating a measurand (M) therewith and noting the value of this measurand for each measurement session, thus allowing compilation of a data set (S) of data pairs {P n , M n }, where n is an integer in the range 1 ≤ n ≤ N,

    wherein a mathematical technique is employed to automatically process the data set (S) in a manner that comprises the following steps:
    - Defining a Point Spread Function (K) that, for each value of n, has a kernel value K n representing the behavior of the probing beam in a bulk of the sample for beam parameter value P n ;
    - Defining a spatial variable (V) that represents a physical property (O) of the sample as a function of position in its bulk;
    - Defining an imaging quantity (Q) that, for each value of n, has a value Q n that is a multi-dimensional convolution of K n and V, such that Q n = K n * V;
    - For each value of n, computationally determining a minimum divergence min D M n ‖ K n * V
    between M n and Q n , wherein one solves for V while applying constraints on the values Kn.

    Abstract translation: 一种使用带电粒子显微镜检查样本的方法,包括以下步骤: - 在多个(N)测量会话中使用带电粒子的探测束来辐射样本的表面,每个测量会话具有关联的射束参数( P)值从一系列这样的值中选择并且在测量会话之间不同; - 在每个测量会话期间检测由样本发出的受激辐射,将被测量(M)与其关联,并且针对每个测量会话记录该被测量的值,从而允许编译数据对{Pn,Mn} ,其中n是1≤n≤N范围内的整数,其中采用数学方法以包括以下步骤的方式自动处理数据集(S): - 定义点扩散函数(K),其中, 对于n的每个值,具有代表针对波束参数值Pn的样本的体中的探测光束的行为的核值Kn; - 定义代表样品物理性质(O)的空间变量(V)作为其体积位置的函数; - 定义对于每个n的值具有作为Kn和V的多维卷积的值Qn的成像量(Q),使得Qn = Kn * V; - 对于n的每个值,通过计算确定Mn和Qn之间的最小发散度最小值DMn‖Kn* V,其中在对值K n施加限制时求解V.

    Silicon Drift Detector for use in a charged particle apparatus
    8.
    发明公开
    Silicon Drift Detector for use in a charged particle apparatus 审中-公开
    西班牙语中的Siliziumdriftdetektor zur Verwendung Vilrichtungfürgeladene Teilchen

    公开(公告)号:EP2544025A1

    公开(公告)日:2013-01-09

    申请号:EP11172955.4

    申请日:2011-07-07

    Applicant: FEI Company

    Abstract: The invention relates to a detector with a Silicon Drift Diode (SDD) ( 10 , 200) for use in a charged particle apparatus. Such detectors are well-known for the detection of X-rays, but are not capable to detect secondary or backscattered electrons for two reasons:
    1. the volume (20) in the SDD where electron/hole pairs must be generated is too far removed from the surface ( 18 ). This can be solved by known techniques resulting in a shallow layer, for example using thin boron layers.
    2. Secondary and/or backscattered electrons are generated with a much higher efficiency than X-rays, as a result of which the current of backscattered electrons is typically too high to be detected due to the limited count rate of a SDD (typically up to 1 Mc/s, equivalent to a maximum electron current of up to 0.16 pA).
    The invention describes a detector with a SDD ( 200 ) and an amplifier (206), and a feed-back element in the form of, for example, a resistor (208) or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch (209), the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta.

    Abstract translation: 本发明涉及一种用于带电粒子装置的具有硅漂移二极管(SDD)(10,200)的检测器。 这种检测器是众所周知的,用于检测X射线,但不能检测次级或反向散射电子的原因有两个:1. SDD中必须产生电子/空穴对的体积(20)太远, 从表面(18)。 这可以通过已知的技术来解决,从而产生浅层,例如使用薄硼层。 二次和/或反向散射电子以比X射线高得多的效率产生,其结果是后向散射电子的电流通常太高以致不能被检测到,这是由于SDD的计数率有限(通常高达 1 Mc / s,相当于最大电子电流高达0.16 pA)。 本发明描述了具有SDD(200)和放大器(206)的检测器,以及例如可切换地连接到放大器的输出端的电阻器(208)或二极管形式的反馈元件。 当通过开关(209)选择反馈元件时,检测器以用于确定电子电流的电流测量模式操作,并且当元件未被选择时,检测器以其公知的脉冲高度测量模式操作,以确定 X射线量子。

    Method of manufacturing a radiation detector
    9.
    发明公开
    Method of manufacturing a radiation detector 审中-公开
    一种用于生产辐射探测器过程

    公开(公告)号:EP2346095A3

    公开(公告)日:2011-07-27

    申请号:EP11150672.1

    申请日:2011-01-12

    Applicant: FEI COMPANY

    CPC classification number: H01L31/1185 H01J37/244 H01L31/022408 H01L31/105

    Abstract: The invention discloses a process for manufacturing a radiation detector for detecting e.g. 200 eV electrons. This makes the detector suited for e.g. use in an Scanning Electron Microscope.
    The detector is a PIN photodiode with a thin layer of pure boron connected to the p + -diffusion layer. The boron layer is connected to an electrode with an aluminium grid to form a path of low electrical resistance between each given point of the boron layer and the electrode.
    The invention addresses forming the aluminium grid on the boron layer without damaging the boron layer. To that end the grid of aluminium is formed by covering the boron layer completely with a layer of aluminium and then removing part of the layer of aluminium by etching, the etching comprising a first step (304) of dry etching, the step of dry etching defining the grid but leaving a thin layer of aluminium on the part of the boron layer to be exposed, followed by a second step (308) of wet etching, the step of wet etching completely removing the aluminium from the part of the boron layer to be exposed.

Patent Agency Ranking