Abstract:
Interconnection elements (752) and/or tip structures (770) for interconnection elements (752) may first be fabricated upon sacrificial substrates (702) for subsequent mounting to electronic components (784). In this manner, the electronic components (784) are not "at risk" during the fabrication process. The sacrificial substrate (702) establishes a predetermined spatial relationship between the interconnection elements (752) which may be composite interconnection elements (752) having a relatively soft elongate element (752) as a core and a relatively hard (springy material) overcoat (754). Interconnection elements (752) may be fabricated upon tip structures (770), or may first be mounted to the electronic component (784) and the tip structures (770) joined to the free-ends of the interconnection elements (752). Tip structures (770) formed as cantilever beams are described.
Abstract:
An interconnection contact structure assembly including an electronic component (102) having a surface and a conductive contact terminal (103) carried by the electronic component (102) and accessible at the surface. The contact structure (101) includes an internal flexible elongate member (106) having first (107) and second ends (108) and with the first end (107) forming a first intimate bond to the surface of the conductive contact terminal (103) without the use of a separate bonding material. An electrically conductive shell (116) is provided and is formed of at least one layer of a conductive material enveloping the elongate member (106) and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
Interconnection elements (210) for electronic components, exhibiting desirable mechanical characteristics (such as resiliency, for making pressure contacts) are formed by shaping an elongate element (core) (216) of a soft material (such as gold) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped elongate element with a hard material (220) (such as nickel and its alloys), to impart a desired spring (resilient) characteristic to the resulting composite interconnection element (210). A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element (210). The elongate element (216) may be formed from a wire, or from a sheet (e.g., metal foil). The resulting interconnection elements may be mounted to a variety of electronic components, including directly to semiconductor dies and wafers (in which case the overcoat material anchors the composite interconnection element (210) to a terminal (or the like) on the electronic component), may be mounted to support substrates for use as interposers and may be mounted to substrates for use as probe cards or probe card inserts.
Abstract:
Techniques for performing wafer-level burn-in and test of semiconductor devices include a test substrate having active electronic components such as ASICs mounted to an interconnection substrate or incorporated therein, metallic spring contact element effecting interconnections between the ASICs and a plurality of devices-under-test (DUTs) on a wafer-under-test (WUT), all disposed in a vacuum vessel so that the ASICs can be operated at temperatures independent from and significantly lower than the burn-in temperature of the DUTs. The spring contact elements may be mounted to either the DUTs or to the ASICs, and may fan out to relax tolerance constraints on aligning and interconnecting the ASICs and the DUTs. A significant reduction in interconnect count and consequent simplification of the interconnection substrate is realized because the ASICs are capable of receiving a plurality of signals for testing the DUTs over relatively few signal lines from a host controller and promulgating these signals over the relatively many interconnections between the ASICs and the DUTs. The ASICs can also generate at least a portion of these signals in response to control signals from the host controller. Physical alignment techniques are also described. Micromachined indentations on the front surface of the ASICs ensure capturing free ends of the spring contact elements. Micromachined features on the back surface of the ASICs and the front surface of the interconnection substrate to which they are mounted facilitate precise alignment of a plurality of ASICs on the support substrate.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined in masking layers deposited on a surface of a substrate which may be an electronic component such as an active semiconductor device. Each spring contact element has a base end, a contact end, and a central body portion. The contact end is offset in the z-axis (at a different height) and in at least one of the x and y directions from the base end. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the substrate. The spring contact elements make temporary (i.e., pressure) or permanent (e.g., joined by soldering or brazing or with a conductive adhesive) connections with terminals of another electronic component to effect electrical connections therebetween. In an exemplary application, the spring contact elements are disposed on semiconductor devices resident on a semiconductor wafer so that temporary connections can be made with the semiconductor devices to burn-in and/or test the semiconductor devices.
Abstract:
A plurality of contact elements, such as contact bumps or free-standing spring contacts including both monolithic and composite interconnection elements, are mounted to relatively small tile substrates which, in turn, are mounted and connected to a relatively large electronic component substrate, thereby populating the electronic component with a plurality of contact elements while avoiding the necessity of yielding the contact elements directly upon the electronic component. The relatively large electronic component is suitably a space transformer component of a probe card assembly. In this manner, pressure connections can be made to an entire semiconductor wafer, at once, to provide for wafer-level burn-in, and the like. Solder balls, z-axis conductive adhesive, or compliant connections are suitably employed for making electrical connections between the tile substrates and the electronic component. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the tiles can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described. Techniques for maintaining a prescribed x-y and z-axis alignment of the tiles to the relatively large substrate are disclosed.
Abstract:
A probe card assembly (500) includes a probe card (502), a space transformer (506) having resilient contact structures (probe elements) (524) mounted directly to and extending from terminals (522) on a surface thereof, and an interposer (504) disposed between the space transformer (506) and the probe card (502). The space transformer (506) and interposer are "stacked up" so that the orientation of the space transformer (506), hence the orientation of the tips of the probe elements (524), can be adjusted without changing the orientation of the probe card. Suitable mechanisms (532, 536, 538, 546) for adjusting the orientation of the space transformer (506), and for determining what adjustments to make, are disclosed. Multiple die sites on a semiconductor wafer (508) are readily probed using the disclosed techniques, and the probe elements (524) can be arranged to optimize probing of an entire wafer (508). Composite interconnection elements (200) having a relatively soft core (206) covercoated by a relatively hard shell (218, 220) as the resilient contact structures are described.
Abstract:
Ends (202b) of elongate interconnection elements, such as spring contact elements (202), effecting pressure connections to terminals of electronic components such as semiconductor devices resident on a semiconductor wafer are protected from adverse effects of undesired lateral forces by a "floating" lateral support element (220). The floating lateral support (220) is a planar member which has a plurality of holes (208) through which the free ends (202b) of the elongate interconnection elements (202) extend, and permits a small (constrained) amount of independent lateral deflection for each interconnection element (202). When an individual interconnection element (212a) exceeds the permitted amount of lateral deflection, it "bumps" into the sidewall of the respective hole in the floating lateral support (220) through which it extends, and further lateral deflection of the interconnection element is resisted by the floating lateral support (220) moving laterally with the laterally-deflected interconnection element (212a) and coming into contact with the remaining interconnection elements (212b, 212c, 212d), which will restrain further lateral movement of the laterally-deflected interconnection element (212a). Additional lateral displacement is prevented by a separate stop mechanism (330) located peripheral to the floating lateral support (320).
Abstract:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively "perfect" contact tip structures ("tips") and joining them to relatively "imperfect" interconnection elements to improve the overall capabilities of resulting "tipped" interconnection elements.