Abstract:
A plasma source of soft x-rays provides the illumination for a microfluoroscope. In general, an x-ray relay optic collects part of the diverging plasma radiation and redirects it to a distant plane. At that plane, the fine-grained or grainless fluorescent screen of a microfluoroscope is placed to receive the radiation. A specimen is placed in direct contact with the screen, or in very close proximity, so that its x-ray shadow is projected onto the screen. The screen is very thin and transparent to visible or ultraviolet light so that a high-numerical-aperture optical microscope objective can closely approach and view the screen from the opposite side. The optical microscope views the fluorescent light emitted by the screen, which corresponds to the x-ray absorption shadow of the specimen. In general, a very thin, x-ray transparent vacuum window is used to separate the specimen, fluorescent screen, and microscope from the vacuum of the plasma source. Thin-film filters and/or monochromator devices are used to limit the wavelengths of soft x-rays which reach the fluorescent screen to the desired energy range. The use of the apparatus and process occurs with either a separate instrument or as an add-on feature to a conventional optical microscope.
Abstract:
A point projection photoelectron microscope. A specimen is enclosed in a photoconductor (N) that is subject to the photoelectric effect. The specimen is positioned on a pedestal in an evacuated chamber (C). The specimen is bombarded by radiation, either of light, ultraviolet radiation, or soft X-rays (S). The photoconductor is in a vacuum chamber and it is highly charged with a negative potential. The vacuum chamber includes a surface sensitive to electron flow (P) for making an image (I). This surface is a phosphor screen or an image intensifier having the capability to be gated for imaging or not imaging incident electrons or a segmented electron collecting anode for electronic imaging. In operation, a collimated beam of radiation, ranging from light to soft x-rays is projected through a specimen disposed in the photoconductor. An image of the specimen is produced on the photoconductor. The light or X-ray which impact on the photoconductor which produce electrons by the photoelectric effect. The electrons migrate beyond the photoconductor where the electric field at the tip of the photoconductor radially repels the electrons to an towards the imaging surface, typically the image intensifier.
Abstract:
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
Abstract:
A metal or glass wire (W) is etched into a narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal (V) of the wire from an etchant bath (B) using feedback control (C), a carefully controlled taper is produced. A sensor (S) measures the diameter of the wire as it leaves the surface of the etchant. The etched and smoothed wire is coated with a material for optimizing the reflectivity of the radiation being focused. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. The original wire material is then chemically etched away through slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.
Abstract:
A plasma source of soft x-rays provides the illumination for a microfluoroscope. In general, an x-ray relay optic collects part of the diverging plasma radiation and redirects it to a distant plane. At that plane, the fine-grained or grainless fluorescent screen of a microfluoroscope is placed to receive the radiation. A specimen is placed in direct contact with the screen, or in very close proximity, so that its x-ray shadow is projected onto the screen. The screen is very thin and transparent to visible or ultraviolet light so that a high-numerical-aperture optical microscope objective can closely approach and view the screen from the opposite side. The optical microscope views the fluorescent light emitted by the screen, which corresponds to the x-ray absorption shadow of the specimen. In general, a very thin, x-ray transparent vacuum window is used to separate the specimen, fluorescent screen, and microscope from the vacuum of the plasma source. Thin-film filters and/or monochromator devices are used to limit the wavelengths of soft x-rays which reach the fluorescent screen to the desired energy range. The use of the apparatus and process occurs with either a separate instrument or as an add-on feature to a conventional optical microscope.
Abstract:
A capillary optic produced by impression has a mold with an external profile figured for radiation transmission along an axis used as a mandrel for impression. The mold often takes the form of a precisely etched wire. At least one soft plate is used for impressing the mold into the soft plate. The mold is removed from the soft plate to leave a vacant impression figured for radiation transmission in the soft plate along an axis. The impression is then closed to provide for radiation transmission along the axis of the impression. In the most common embodiment, two relatively soft plates having identical compositions with flat and highly polished initial surfaces are used. The impression(s) can be coated with reflective materials. Disclosure of an optical connector and emitter is included.
Abstract:
A capillary optic produced by impression has a mold with an external profile figured for radiation transmission along an axis used as a mandrel for impression. The mold (W) often takes the form of a precisely etched wire. At least one soft plate (P) is used for impressing the mold into the soft plate. The mold is removed from the soft plate to leave a vacant impression figured for radiation transmission in the soft plate along an axis. The impression is then closed to provide for radiation transmission along the axis of the impression. In the most common embodiment, two relatively soft plates (P) having identical compositions with flat and highly polished initial surfaces are used. The impression(s) can be coated with reflective materials. Disclosure of an optical connector and emitter is included.