Abstract:
A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin (100), and a second-type of FinFET which includes a second fin (102) running parallel to the first fin (100). The invention also has an insulator fin positioned between the source/drain regions (130) of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin (100) and the second fin (102), such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate (106) formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate (106) includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET. The differences between the first impurity doping region and the second impurity doping region provide the gate with different work functions related to differences between the first-type of FinFET and the second-type of FinFET. The first fin (100) and the second fin (102) have approximately the same width.
Abstract:
PROBLEM TO BE SOLVED: To obtain a semiconductor structure containing a rare-earth dopant, which is particularly useful to optical devices, such as light-emitting diode(LED), laser, optical amplifier, etc., and a method for manufacturing the structure. SOLUTION: A region 5 positioned near a p-n junction 4 is doped with a rare-earth element. A semiconductor structure doped with rare-earth element contains a p-n junction, having a first p-type region 2 and a first n-type region 3 in a semiconductor. The structure also contains a charge source coupled with either one of the regions 2 and 3 and excites rare-earth atoms by supplying charged carriers.
Abstract:
Multilevel metallization layouts for an integrated circuit chip (30) including transistors having first (31 ), second (32) and third (33) elements to which metallization layouts connect. The layouts minimize current limiting mechanism including electromigration by positioning the connection (39) for the second contact vertically (32) from the chip (30), overlapping the planes and fingers of the metallization layouts to the first and second elements (31 ) and (32) and forming a pyramid or staircase of multilevel metallization layers (45) and (46) to smooth diagonal current flow.
Abstract:
A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin (100), and a second-type of FinFET which includes a second fin (102) running parallel to the first fin (100). The invention also has an insulator fin positioned between the source/drain regions (130) of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin (100) and the second fin (102), such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate (106) formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate (106) includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET. The differences between the first impurity doping region and the second impurity doping region provide the gate with different work functions related to differences between the first-type of FinFET and the second-type of FinFET. The first fin (100) and the second fin (102) have approximately the same width.
Abstract:
A structure having a p-n junction in a semiconductor having a first p-type region and a first n-type region along with a region located in the vicinity of the p-n junction that is doped with a rare-earth element. In addition, the structure includes a charge source coupled to one of the p- type region and n-type region for providing charge carriers to excite atoms of the rare-earth element. Also provided is a method for producing the structure that includes providing a bipolar junction transistor; doping a region in a collector of the transistor with a rare-earth element; and biasing the transistor to generate light emission from the rare-earth element doped region.
Abstract:
A structure having a p-n junction in a semiconductor having a first p-type region and a first n-type region along with a region located in the vicinity of the p-n junction that is doped with a rare-earth element. In addition, the structure includes a charge source coupled to one of the p- type region and n-type region for providing charge carriers to excite atoms of the rare-earth element. Also provided is a method for producing the structure that includes providing a bipolar junction transistor; doping a region in a collector of the transistor with a rare-earth element; and biasing the transistor to generate light emission from the rare-earth element doped region.