Abstract:
PROBLEM TO BE SOLVED: To provide a method of assembling an array of particulates or molecules using an atomic force microscope for partitioning a ferro-dielectric magnetic domain. SOLUTION: A ferro-dielectric thin film 12 is attached onto a base board 11 which forms a work to be processed, and patterns are formed on the thin film using atomic force microscope which has an electroconductive probe 13 so that the desired nano-circuit pattern is partitioned. Then a selected region on the thin film is exposed to a solution containing chemical seed(s) to be adsorbed or accumulated selectively under influence of the electrophoretic force.
Abstract:
PROBLEM TO BE SOLVED: To provide an oxide channel FET structure for incorporating a buried oxide channel by incorporating conductive metallic oxide electrodes for buried source and drain electrodes. SOLUTION: A method for constructing the oxide electrodes for use in an oxide channel field-effect transistor (OxFET) device is disclosed. The electrodes are formed by first depositing a double layer 130 and 140 of conducting perovskite oxides onto an insulating oxide substrate. A resist pattern with the electrode configuration is then defined over the double layer. The top oxide layer is ion milled to a depth without reaching the substrate. Chemical etching of RIE is used to remove the part of the lower conductive oxide layer. The source and drain electrodes are thereby defined, which can be then used as buried contacts. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing a complementary field-effect transistor structure having an oxide channel of a Mott material. SOLUTION: A method for manufacturing complementary field-effect transistor structure includes a step of forming a laminated structure having first and second sides. The first side has a first-type Mott channel layer 107 and the second side has a second-type Mott channel layer 106. A first source area 408 and a first drain area 409 are formed in the first side, and a second source area 302 and a second drain area 303 are formed in the second side. A first gate area 301 is formed in the second side and a second gate area 301 is formed in the first side. The first source, drain, and gate areas 408, 409, and 301 constitute a first-type field effect transistor, and the second source, drain, and gate areas 302, 303, and 412 constitute a second-type field effect transistor.
Abstract:
Verfahren zum Herstellen einer Phasenwechselspeicher-Zelle, wobei das Verfahren die folgenden Schritte umfasst: Bilden einer dielektrischen Schicht oberhalb einer Elektrode, wobei die Elektrode ein Elektrodenmaterial umfasst; Bilden eines Durchgangslochs in der dielektrischen Schicht, sodass das Durchgangsloch bis hinunter zur Elektrode reicht; und Wachsen eines Einkristalls eines Phasenwechselmaterials auf der Elektrode in dem Durchgangsloch unten Verwendung eines Abscheidungsprozess, wobei während des Abscheidungsprozesses ein Volumen des Durchganslochs mit dem Einkristall aufgefüllt ist.
Abstract:
Ein Verfahren zum Herstellen einer Phasenwechselspeicher(PCM)-Zelle beinhaltet Bilden einer dielektrischen Schicht oberhalb einer Elektrode, wobei die Elektrode ein Elektrodenmaterial umfasst; Bilden eines Durchgangslochs in der dielektrischen Schicht, sodass das Durchgangsloch bis hinunter zu der Elektrode reicht; und Wachsen eines Einkristalls eines Phasenwechselmaterials auf der Elektrode in dem Durchgangsloch. Eine Phasenwechselspeicher(PCM)-Zelle beinhaltet eine Elektrode, die ein Elektrodenmaterial umfasst; eine dielektrische Schicht oberhalb der Elektrode; ein Durchgangsloch in der dielektrischen Schicht; und einen Einkristall eines Phasenwechselmaterials angeordnet in dem Durchgangsloch, wobei der Einkristall die Elektrode am Boden des Durchgangslochs berührt.
Abstract:
A phase change memory cell that includes a bottom electrode, a top electrode separated from the bottom electrode, and growth-dominated phase change material deposited between the bottom electrode and the top electrode and contacting the bottom electrode and the top electrode and surrounded by insulation material at sidewalls thereof. The phase change memory cell in a reset state only includes an amorphous phase of the growth-dominated phase change material within an active volume of the phase change memory cell.
Abstract:
A phase change memory cell that includes a bottom electrode, a top electrode separated from the bottom electrode, and growth-dominated phase change material deposited between the bottom electrode and the top electrode and contacting the bottom electrode and the top electrode and surrounded by insulation material at sidewalls thereof. The phase change memory cell in a reset state only includes an amorphous phase of the growth-dominated phase change material within an active volume of the phase change memory cell.
Abstract:
A method for fabricating a phase change memory (PCM) cell includes forming a dielectric layer over an electrode, the electrode comprising an electrode material; forming a via hole in the dielectric layer such that the via hole extends down to the electrode; and growing a single crystal of a phase change material on the electrode in the via hole. A phase change memory (PCM) cell includes an electrode comprising an electrode material; a dielectric layer over the electrode; a via hole in the dielectric layer; and a single crystal of a phase change material located in the via hole, the single crystal contacting the electrode at the bottom of the via hole.