Abstract:
An array of through substrate vias (TSVs) is formed through a semiconductor substrate and a contact-via-level dielectric layer thereupon. A metal-wire-level dielectric layer and a line-level metal wiring structure embedded therein are formed directly on the contact-via-level dielectric layer. The line-level metal wiring structure includes cheesing holes that are filled with isolated portions of the metal-wire-level dielectric layer. In one embodiment, the entirety of the cheesing holes is located outside the area of the array of the TSVs to maximize the contact area between the TSVs and the line-level metal wiring structure. In another embodiment, a set of cheesing holes overlying an entirety of seams in the array of TSVs is formed to prevent trapping of any plating solution in the seams of the TSVs during plating to prevent corrosion of the TSVs at the seams.
Abstract:
A method and structure for fabricating a laser fuse and a method for programming the laser fuse. The laser fuse includes a first dielectric layer having two vias filled with a first self-passivated electrically conducting material. A fuse link is on top of the first dielectric layer. The fuse link electrically connects the two vias and includes a second material having a characteristic of changing its electrical resistance after being exposed to a laser beam. Two mesas are over the fuse link and directly over the two vias. The two mesas each include a third self-passivated electrically conducting material. The laser fuse is programmed by directing a laser beam to the fuse link. The laser beam is controlled such that, in response to the impact of the laser beam upon the fuse link, the electrical resistance of the fuse link changes but the fuse link is not blown off. Such electrical resistance change is sensed and converted to digital signal.