Abstract:
A square-shaped beam of charged particles is passed over a registration mark, which is formed by a depression or a rise in the surface of a semiconductor wafer. When the beam passes over one edge of the mark, a positive peak signal is produced from a pair of diode detectors located with their surfaces orthogonal to the direction of the beam scan and a negative peak signal is produced when the beam passes over the other edge of the mark. The amplitudes of these peak signals are balanced so that they are substantially the same irrespective of the location of each of the diode detectors relative to the mark in comparison with the location of the other of the diode detectors relative to the mark. These peak signals are compared with positive and negative threshold signals in comparators with an output signal being produced from each of the comparators when its threshold signal is crossed. This enables location of each of the marks to be determined. The positive and negative threshold signals are set during the prior scan with the scans being in opposite directions. The peak to peak amplitude across the registration mark in a particular area is sampled during the first scan and used to provide an automatic gain factor for the remainder of the scans across the mark so that a substantially constant peak amplitude signal is transmitted to the comparators.
Abstract:
A square-shaped electron beam is stepped from one predetermined position to another to form a desired pattern on each chip of a semiconductor wafer to which the beam is applied. For each chip to which the beam is applied, the position of the chip relative to a predetermined position is determined and the distance in these positions is utilized to control the position of the electron beam to insure that the desired pattern is formed on each of the chips separately. Furthermore, the position of the beam is periodically checked against a calibration grid to ascertain any deviations in the beam from its initial position. These differences are applied to properly position the beam.
Abstract:
In electron beam apparatus having a source of electrons and a target area toward which the electrons are directed, electron beam forming means are provided along the path from the source to the target. These forming means include a first beam shaping member having a first spot shaping aperture therein, a second beam shaping member having a second spot shaping aperture therein, and means focusing the image of the first aperture in the plane of the second aperture to thereby form a composite spot shape defined by the image of the first aperture and the second aperture. Further means are provided for focusing the image of the composite spot in the target area. Preferably, the apertures are square shaped. Thus, by varying the position of the superimposed image of the first aperture with respect to the second aperture, a wide variety of rectangular shaped composite spots with different dimensions is obtainable. This permits the exposure of rectilinear patterns, e.g., in photoresists of integrated circuit fabrication, by the electron beam with a minimum of exposure steps and substantially no exposure overlap. The result is greatly increased speed in the total exposure of such rectilinear areas to the electron beam as well as a minimum of the "blooming effects" produced by exposure overlap.
Abstract:
A beam of charged particles has its alignment and brightness alternately controlled in accordance with the current of the beam. The measurements of the current and any corrections for alignment or brightness are made when the beam is not applied to a target.
Abstract:
1508903 Wave energy position finding INTERNATIONAL BUSINESS MACHINES CORP 23 May 1975 [27 June 1974] 22919/75 Heading G1A [Also in Division H4] The position of a registration mark on a target (e.g. a semi-conductor wafer) is detected by irradiating the mark with a beam of charged particles. The present invention is stated to be an improvement over the system described in Specification 1480562. As described, each mark 42, Fig. 17, consists of vertical and horizontal bars 44, 43 (raised portions or depressions), the position of the mark being determined from 20 horizontal (X) scans followed by 20 vertical (Y) scans, successive scans being in opposite directions. Peak signals corresponding to the edges of a bar are detected and applied to threshold circuitry which is updated during each scan. Diodes 45, 46 and 45', 46' detect radiation during X, Y scans respectively, the arrangement including extra diodes 47 and an extra lead going to a respective preamplifier 48-66 for noise suppression. X-scanning: The outputs 70, 71 from diodes 45, 46 contain peaks 72 &c. corresponding to the edges of a bar 44. These signals pass to a differential amplifier 69 via balancers 58, 60 which compensate for the fact that the mark being scanned will be nearer one diode than the other. The output 85, Fig. 13, from amplifier 69 contains positive and negative peaks 86, 87 corresponding to the edges of a bar. The signals are shown without any ramp component. Such component is removed in filter 89 to leave the peak signals plus a substantially constant residual baseline voltage, Figs. 14 and 15 (not shown). The output from filter 89 is fed via an AGC circuit 90 to positive and negative peak detectors 99, 100 and an averaging circuit 122. During the first scan, outputs 103, 104 from detectors 99, 100 are used to set the gain levels in AGC 90 for subsequent scans so as to compensate for the surface conditions on the wafer in the region of the mark being scanned. At the end of the first scan the contents of 99, 100, 122 are passed to stores 143, 128, 136 the outputs of which are combined by means of resistors 144, 140, 137 to produce positive and negative threshold signals 134 and 141 which are correlated with the residual baseline voltage. These signals pass via differential amplifiers 135, 142 to act as threshold levels for voltage comparators 118, 119 receiving signals from AGC 90 via a switch 116 (blocked during the first scan). During the second scan, fresh data is fed to detectors 99 &c. and stores 143 &c. and switch 116 is enabled to pass the output of AGC 90 to the comparators, outputs of which are however not used until the third scan. During the third and subsequent scans, comparators 118, 119 produce signals whenever the signals from AGC 90 cross the levels set during the preceding scan by amplifiers 135, 142. The ORed outputs from 118, 119 enable a gate 151, so that clockpulses 153 pass to a feedback channel 152 and a computer 19 which uses the detected-edge signals, averaged over the last 18 scans, to determine the location of mark 42. Since successive scans occur in opposite directions, stores 143, 136 incorporate means for reversing the sign of their outputs, so that detectors 99, 100 continue to detect the same edge of a bar 44 during successive scans. The Y-scan is then performed in the same way. The various blocks of Fig. 2 are described in detail with reference to Figs. 3-9 (not shown).
Abstract:
1508903 Wave energy position finding INTERNATIONAL BUSINESS MACHINES CORP 23 May 1975 [27 June 1974] 22919/75 Heading G1A [Also in Division H4] The position of a registration mark on a target (e.g. a semi-conductor wafer) is detected by irradiating the mark with a beam of charged particles. The present invention is stated to be an improvement over the system described in Specification 1480562. As described, each mark 42, Fig. 17, consists of vertical and horizontal bars 44, 43 (raised portions or depressions), the position of the mark being determined from 20 horizontal (X) scans followed by 20 vertical (Y) scans, successive scans being in opposite directions. Peak signals corresponding to the edges of a bar are detected and applied to threshold circuitry which is updated during each scan. Diodes 45, 46 and 45', 46' detect radiation during X, Y scans respectively, the arrangement including extra diodes 47 and an extra lead going to a respective preamplifier 48-66 for noise suppression. X-scanning: The outputs 70, 71 from diodes 45, 46 contain peaks 72 &c. corresponding to the edges of a bar 44. These signals pass to a differential amplifier 69 via balancers 58, 60 which compensate for the fact that the mark being scanned will be nearer one diode than the other. The output 85, Fig. 13, from amplifier 69 contains positive and negative peaks 86, 87 corresponding to the edges of a bar. The signals are shown without any ramp component. Such component is removed in filter 89 to leave the peak signals plus a substantially constant residual baseline voltage, Figs. 14 and 15 (not shown). The output from filter 89 is fed via an AGC circuit 90 to positive and negative peak detectors 99, 100 and an averaging circuit 122. During the first scan, outputs 103, 104 from detectors 99, 100 are used to set the gain levels in AGC 90 for subsequent scans so as to compensate for the surface conditions on the wafer in the region of the mark being scanned. At the end of the first scan the contents of 99, 100, 122 are passed to stores 143, 128, 136 the outputs of which are combined by means of resistors 144, 140, 137 to produce positive and negative threshold signals 134 and 141 which are correlated with the residual baseline voltage. These signals pass via differential amplifiers 135, 142 to act as threshold levels for voltage comparators 118, 119 receiving signals from AGC 90 via a switch 116 (blocked during the first scan). During the second scan, fresh data is fed to detectors 99 &c. and stores 143 &c. and switch 116 is enabled to pass the output of AGC 90 to the comparators, outputs of which are however not used until the third scan. During the third and subsequent scans, comparators 118, 119 produce signals whenever the signals from AGC 90 cross the levels set during the preceding scan by amplifiers 135, 142. The ORed outputs from 118, 119 enable a gate 151, so that clockpulses 153 pass to a feedback channel 152 and a computer 19 which uses the detected-edge signals, averaged over the last 18 scans, to determine the location of mark 42. Since successive scans occur in opposite directions, stores 143, 136 incorporate means for reversing the sign of their outputs, so that detectors 99, 100 continue to detect the same edge of a bar 44 during successive scans. The Y-scan is then performed in the same way. The various blocks of Fig. 2 are described in detail with reference to Figs. 3-9 (not shown).