Abstract:
PROBLEM TO BE SOLVED: To provide a method and system which can obtain a method and apparatus setting wafer chips with a single power on and off sequence, and further adjust a chip parameter during a wafer test without utilizing the sequence. SOLUTION: The method comprises the steps of: assigning a specific identifier to a controllable chip resistor by a program of each wafer chip for test (step 52); storing a value of the parameter fixed by corresponding to each of them inside the chip resistor of the chip selected based on its identifier (step 54); and performing a test evaluating a setting of the parameter for each chip with a desired parameter set simultaneously (step 56). COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
A redundancy unit (204) comprising first (260) and second (270) fuse blocks for programming the redundancy element (220) is disclosed. One fuse block has laser blowable fuses and the other electrical fuses. The redundancy unit can be programmed by either one of the fuse blocks, enabling the redundancy unit to able to be used for defects identified before and after packaging.
Abstract:
A method for reducing noise coupling in a memory array is disclosed. The memory array includes a plurality memory cells interconnected by wordlines, bitlines, and platelines. The memory cells are arranged in columns having first and second bitlines coupled to a sense amplifier. During a memory access, at least adjacent bitlines pairs are not activated. The selected bitline pair or pairs are provided with a plateline pulse.
Abstract:
An IC with memory cells arranged in groups is described. The memory cells, for example, are ferroelectric memory cells. The IC includes a variable voltage generator (VVG) for generating an output voltage having a different voltage level depending on a location of an addressed memory cell within the memory group is provided. By providing different voltage levels for reads and/or writes, signal loss caused by capacitances which is dependent on the location of the memory cell within the group can be avoided. This improves read and/or write operations in series memory architectures.
Abstract:
A method and apparatus according to the present invention enable wafer chips to be configured with a single power on and off sequence and further enable a chip parameter to be adjusted during a wafer test without utilizing that sequence. In particular, each wafer chip under test is assigned a unique programmable identification. Once each chip has been assigned a corresponding identification, the chips may each be individually accessible by that identification to provide parameter values to chip registers to configure that chip. The configured chips may be subsequently tested in parallel to evaluate the parameter settings. In addition, the present invention enables chips to share data I/O pins or lines, thereby reducing the quantity of testing machine pins utilized for each chip and enabling a greater quantity of chips to be tested in a parallel fashion.
Abstract:
A memory device and methods to exploit extra or dummy wordlines in the memory device, wherein the extra wordlines are not part of a main memory area of the memory device but, when activated, connect their attached memory cells to the bitlines of the main memory area. The extra wordlines are connected to a voltage in such a manner so as to simulate a floating wordline condition. Associated with each extra wordline is a driver circuit that connects the extra wordline to a voltage to allow it to charge up to the voltage, and subsequently disconnects the wordline from the voltage to allow it to float. While the extra wordline is floating, measurements may be made on the memory device to gather data useful for testing production memory chips for floating wordline conditions. According to another aspect, one or more extra wordlines may be activated to connect its attached memory cells to bitlines, thereby increasing the capacitance on the bitlines. This is useful during certain test mode conditions of a memory device, or on a more permanent basis to enhance the performance of the memory device.
Abstract:
A method for reducing noise coupling in a memory array is disclosed. The memory array includes a plurality memory cells interconnected by wordlines, bitlines, and platelines. The memory cells are arranged in columns having first and second bitlines coupled to a sense amplifier. During a memory access, at least adjacent bitlines pairs are not activated. The selected bitline pair or pairs are provided with a plateline pulse.
Abstract:
A method for reducing noise coupling in a memory array is disclosed. The memory array includes a plurality memory cells interconnected by wordlines, bitlines, and platelines. The memory cells are arranged in columns having first and second bitlines coupled to a sense amplifier. During a memory access, at least adjacent bitlines pairs are not activated. The selected bitline pair or pairs are provided with a plateline pulse.