Abstract:
The invention relates to magnetic switching devices, and more particularly to a method for patterning metal stack layers of a magnetic switching device utilizing TiN and W as a bilayer metal hardmask (7, 8) patterned in two lithography steps with concommitant hardmask open etch and resist strip steps. The hardmask materials TiN and W are chosen so that the mask open etch chemistry is designed with good selectivity, thereby enabling patterning of the hardmask layers prior to etching of the metal stack layers.
Abstract:
A method of fabricating a magnetic tunnel junction (MTJ) device is provided. A patterned hard mask is oxidized to form a surface oxide thereon. An MTJ stack is etched in alignment with the patterned hard mask after the oxidizing of the patterned hard mask. Preferably, the MTJ stack etch recipe includes chlorine and oxygen. Etch selectivity between the hard mask and the MTJ stack is improved.
Abstract:
A resistive memory device (110) and method of manufacturing thereof comprising a cap layer (140) and hard mask layer (142) disposed over magnetic stacks (114), wherein either the cap layer (140) or hard mask layer (142) comprise WN. A seed layer (136) disposed beneath the magnetic stacks (114) may also be comprised of WN, The use of the material WN improves etch process selectivity during the manufacturing process.
Abstract:
Disclosed is a method of tungsten-based hard mask etching of a wafer, comprising providing a patterned tungsten-based hard mask atop a metal-based surface of said wafer, etching through said pattern with a plasma etch that is selective for said metal-based surface with respect to tungsten, and executing a flash etch selective for tungsten, said etch of at least a minimum duration effective in removing substantially all defects caused by tungsten particulate contaminating said wafer. In another aspect of the first embodiment, said tungsten-based hard mask comprises a material selected from tungsten or an alloy thereof. In another aspect of the first embodiment, said metal based surface comprises a material selected from aluminum or an alloy thereof.
Abstract:
A resistive memory device (110) and method of manufacturing thereof comprising a cap layer (140) and hard mask layer (142) disposed over magnetic stacks (114), wherein either the cap layer (140) or hard mask layer (142) comprise WN. A seed layer (136) disposed beneath the magnetic stacks (114) may also be comprised of WN, The use of the material WN improves etch process selectivity during the manufacturing process.
Abstract:
A method and a system for performing a metal reactive ion etching (RIE) process is disclosed. The metal RIE process comprises at least three steps: a metal RIE step, a stripping step and a wet cleaning step. The metal RIE step and the stripping step are carried out in a main reactive chamber.